[1] Wan Z, Xu Z, Wang J.Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry[J]. Analyst, 2006, 131(1):141-147. [2] Schmittmann O, Schulze Lammers P.A true-color sensor and suitable evaluation algorithm for plant recognition[J]. Sensors, 2017, 17(8):1823. [3] Fresenius W.One hundred and forty years“Fresenius’ Journal of Analytical Chemistry”[J]. Fresenius’ Journal of Analytical Chemistry, 2001, 371(8):1041-1042. [4] Cocherie A, Robert M.Direct measurement of lead isotope ratios in low concentration environmental samples by MC-ICP-MS and multi-ion counting[J]. Chemical Geology, 2007, 243(1):90-104. [5] Golge O, Hepsag F, Kabak B.Determination of aflatoxins in walnut sujuk and Turkish delight by HPLC-FLD method[J]. Food Control, 2016, 59:731-736. [6] Alsaafin A, Mckeague M.Functional nucleic acids as in vivo metabolite and ion biosensors[J]. Biosens Bioelectron, 2017, 94:94-106. [7] Du Y, Dong S.Nucleic Acid Biosensors:Recent Advances and Perspectives[J]. Analytical Chemistry, 2017, 89(1):189-215. [8] Liu J, Cao Z, Lu Y.Functional nucleic acid sensors[J]. Chemical Reviews, 2009, 109(5):1948-1998. [9] Zhang H, Zhang H, Aldalbahi A, et al.Fluorescent biosensors enabled by graphene and graphene oxide[J]. Biosensors and Bioelectronics, 2017, 89:96-106. [10] Asnaashari M, Kenari RE, Farahmandfar R, et al.Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles[J]. Sensors & Actuators B Chemical, 2018, 265:339-345. [11] Prodi L, Bolletta F, Montalti M, et al.Luminescent chemosensors for transition metal ions[J]. Coordination Chemistry Reviews, 2000, 205(1):59-83. [12] Wang X, Song P, Lu P, et al.Aggregation-induced emission luminogen-embedded silica nanoparticles containing DNA aptamers for targeted cell imaging[J]. Acs Applied Materials & Interfaces, 2016, 8(1):609. [13] Tyagi A, Chu KL, Abidi IH, et al.Single-probe multistate detection of DNA via aggregation-induced emission on a graphene oxide platform[J]. Acta Biomaterialia, 2016, 50(334):334-343. [14] Zhuang Y, Zhang M, Chen B, et al.Quencher group induced high specificity detection of telomerase in clear and bloody urines by AIEgens[J]. Analytical Chemistry, 2015, 87(18):9487-9493. [15] Selvin PR.Fluorescence resonance energy transfer[J]. Current Opinion in Biotechnology, 1995, 6(1):103-110. [16] Nakayama H, Arakaki A, Maruyama K, et al.Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles[J]. Biotechnology & Bioengineering, 2003, 84(1):96-102. [17] Zhuang Y, Huang F, Xu Q, et al.Facile, fast-responsive, and photo- stable imaging of telomerase activity in living cells with a fluores-cence turn-on manner[J]. Analytical Chemistry, 2016, 88(6):3289-3294. [18] Zhang X, Lou X, Xia F.Advances in the detection of telomerase activity using isothermal amplification[J]. Theranostics, 2017, 7(7):1847-1862. [19] Zhuang Y, Shang C, Lou X, et al.Construction of AIEgens-based bioprobe with two fluorescent signals for enhanced monitor of extracellular and intracellular telomerase activity.[J]. Analytical Chemistry, 2017, 89(3):2073. [20] Ruocan Q, Lin D, Huangxian J.Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle[J]. Journal of the American Chemical Society, 2013, 135(36):13282-13285. [21] Swager TM.The molecular wire approach to sensory signal amplification[J]. Accounts of Chemical Research, 1998, 31(5):201-207. [22] Thomas SW, Joly GD, Swager TM.Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chemical reviews, 2007, 107(4):1339-1386. [23] He F, Tang Y, Wang S, et al.Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer:a platform for homogeneous potassium detection[J]. Journal of the American Chemical Society, 2005, 127(35):12343-12346. [24] Ouyang X, Yu R, Jin J, et al.New strategy for label-free and time-resolved luminescent assay of protein:conjugate Eu3+ complex and aptamer-wrapped carbon nanotubes[J]. Analytical Chemistry, 2011, 83(3):782-789. [25] Chu JF, Chang TC, Li HW.Single-molecule TPM studies on the conversion of human telomeric DNA[J]. Biophysical Journal, 2010, 98(8):1608-1616. [26] Xu S, Zhang Y, Luo X, et al.Fluorescent G-quadruplex-NMM DNA probe for the detection of silver nanoparticles in aqueous media[J]. Analytical Methods, 2015, 7(5):1672-1675. [27] Wang Q, Liu C, Chang J, et al.Novel water soluble styrylquinoli-nium boronic acid as a ratiometric reagent for the rapid detection of hypochlorite ion[J]. Dyes & Pigments, 2013, 99(3):733-739. [28] Andreas Leunig MD, Betz CS, Mehlmann M, et al.Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolev-ulinic acid-Induced protoporphyrin IX fluorescence[J]. Laryn-goscope, 2000, 110(1):78-83. [29] Guo JH, Kong DM, Shen HX.Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes[J]. Biosensors and bioelectronics, 2010, 26(2):327-332. [30] Lu YJ, Ma N, Li Y, et al.Styryl quinolinium/G-quadruplex complex for dual-channel fluorescent sensing of Ag+ and cysteine[J]. Sensors and Actuators B:Chemical, 2012, 173:295-299. [31] Chen J, Lin J, Zhang X, et al.Label-free fluorescent biosensor based on the target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection[J]. Anal Chim Acta, 2014, 817(817):42-47. [32] Guo Y, Sun Y, Shen X, et al.Quantification of Zn(II)using a label-free sensor based on graphene oxide and G-quadruplex[J]. Analytical Methods, 2015, 7(22):9615-9618. [33] Oba S, Hatakeyama M, Handa H, et al.Development of polymer latex particles for selective cleavage of mismatched DNA and their application for DNA diagnosis[J]. Bioconjugate Chemistry, 2005, 16(3):551-558. [34] Berdalet E, Roldán C, Olivar MP.Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases:Part B. Quantification in natural samples[J]. Scientia Marina, 2005, 69(1):17-30. [35] Xu Y, Jiang B, Xie J, et al.Terminal protection of small molecule-linked ssDNA for label-free and sensitive fluorescent detection of folate receptor[J]. Talanta, 2014, 128:237-241. [36] De MD, Croci L, Delibato E, et al.Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry[J]. Applied & Environmental Microbiology, 2003, 69(6):3456-3461. [37] Karlsen F, Steen HB, Nesland JM.SYBR Green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction[J]. Journal of Virological Methods, 1995, 55(1):153-156. [38] Figeys D, Arriaga E, Renborg A, et al.Use of the fluorescent inter-calating dyes POPO-3, YOYO-3 and YOYO-1 for ultrasensitive detection of double-stranded DNA separated by capillary electroph-oresis with hydroxypropylmethyl cellulose and non-cross-linked polyacrylamide[J]. J Chromatogr A, 1994, 669(1-2):205-216. [39] Chiang CK, Huang CC, Liu CW, et al.Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II)in aqueous solution[J]. Anal Chem, 2008, 80(10):3716-3721. [40] Xu W, Lu Y.Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence[J]. Anal Chem, 2009, 82(2):574-578. |