Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (6): 156-163.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0968
Previous Articles Next Articles
OU Yun-wen1,2, LIU Li-jun3, DAI Jun-fei1, MA Bing1, ZHANG Yong-guang1, ZHANG Jie1
Received:
2018-11-11
Online:
2019-06-26
Published:
2019-07-08
OU Yun-wen, LIU Li-jun, DAI Jun-fei, MA Bing, ZHANG Yong-guang, ZHANG Jie. Roles of African Swine Fever Virus Structural Proteins in Viral Infection[J]. Biotechnology Bulletin, 2019, 35(6): 156-163.
[1] Costard S, Mur L, Lubroth J, et al.Epidemiology of African swine fever virus[J]. Virus Res, 2013, 173(1):191-197. [2] Galindo-Cardiel I, Ballester M, Solanes D, et al.Standardization of pathological investigations in the framework of experimental ASFV infections[J]. Virus Res, 2013, 173(1):180-190. [3] Lubisi BA, Bastos ADS, Dwarka RM, et al.Molecular epidemiology of African swine fever in east Africa[J]. Arch Virol, 2005, 150 (12):2439-2452. [4] Woźniakowski G, Kozak E, Kowalczyk A, et al.Current status of African swine fever virus in a population of wild boar in eastern Poland(2014-2015)[J]. Arch Virol, 2016, 161(1):189-195. [5] Misinzo G, Kwavi DE, Sikombe CD, et al.Molecular characterization of African swine fever virus from domestic pigs in northern Tanzania during an outbreak in 2013[J]. Trop Anim Health Pro, 2014, 46 (7):1199-1207. [6] Penrith ML, Vosloo W, Jori F, et al.African swine fever virus eradication in Africa[J]. Virus Res, 2013, 173(1):228-246. [7] José M, Sánchez V, Lina M.African swine fever(ASF):five years around Europe[J]. Vet Microbiol, 2013, 165(1-2):45-50. [8] Śmietanka K, Woźniakowski, G, Kozak, E, et al.African swine fever epidemic, Poland, 2014-2015[J]. Emerg Infect Dis, 2016, 22(7):1201-1207. [9] African Swine Fever(ASF)report N°1-6[R]. OIE’s World Animal Health Information Department, 2018. [10] Ge S, Li J, Fan X, et al.Molecular characterization of African swine fever virus, China[J]. Emerg Infect Dis, 2018, 24(11):2131-2133. [11] Chapman DAG, Darby AC, Silva MD, et al.Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus[J]. Emerg Infect Dis, 2011, 17(4):599-605. [12] Muñoz MR, Galindo I, Cuesta-Geijo MÁ, et al.Host cell targets for African swine fever virus[J]. Virus Res, 2015, 209:118-127. [13] Galindo I, Cuesta-Geijo MA, Hlavova K, et al.African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis[J]. Virus Res, 2015, 200:45-55. [14] Linda KD, David AG, Chapman L, et al.African swine fever virus replication and genomics[J]. Virus Res, 2013, 173(1):3-14. [15] de Villiers EP, Gallardo C, Arias M, et al. Phylogenomic analysis of 11 complete African swine fever virus genome sequences[J]. Virology, 2010, 400(1):128-136. [16] Alejo A, Matamoros T, Guerra M, et al.A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(3):1681-1690. [17] Catharina K, Jan HF, Günther MK, et al.The intracellular proteome of African swine fever virus[J]. Sci Rep, 2018, 8(1):1-9. [18] Andrés G, Alejo A, Simon MC, et al.African swine fever virus protease, a new viral member of the SUMO-1-specific protease family[J]. J Bio Chem, 2001, 276(1):780-787. [19] Alí A, Germán A, María LS.African swine fever virus proteinase is essential for core maturation and infectivity[J]. J Virol, 2003, 77(10):5571-5577. [20] Salas ML, Andrés G.African swine fever virus morphogenesis[J]. Virus Res, 2013, 173(1):29-41. [21] Andrés G, Alejo A, Salas J, et al.African swine fever virus polyproteins pp220 and pp62 assemble into the core shell[J]. J Virol, 2002, 76(24):12473-12482. [22] Gallardo C, Blanco E, Rodríguez JM, et al.Antigenic properties and diagnostic potential of African swine fever virus protein pp62 expressed in insect cells[J]. J Clin Microbiol, 2006, 44(3):950-956. [23] Heath CM, Windsor M, Wileman T.Membrane association facilitates the correct processing of pp220 during production of the major matrix proteins of African swine fever virus[J]. J Virol, 2003, 77(3):1682-1690. [24] Suárez C, Salas ML, Rodríguez JM.African swine fever virus polyprotein pp62 is essential for viral core development[J]. J Virol, 2010, 84(1):176-187. [25] Eulálio A, Nunes CI, Carvalho AL, et al.Two African swine fever virus proteins derived from a common precursor exhibit different nucleocytoplasmic transport activities[J]. J Virol, 2004, 78(18):9731-9739. [26] Eulálio A, Nunes CI, Salas J, et al.African swine fever virus p37 structural protein is localized in nuclear foci containing the viral DNA at early post-infection times[J]. Virus Res, 2007, 130(1):18-27. [27] Eulálio A, Nunes CI, Carvalho AL, et al.Nuclear export of African swine fever virus p37 protein occurs through two distinct pathways and is mediated by three independent signals[J]. J Virol, 2006, 80(3):1393-404. [28] Kolontsov AA, Ustin AV, Shubina NG, et al.Polypeptides p14 and p31 of the African swine fever virus-early proteins located on the membrane of the infected cell[J]. Vopr Virusoli, 1992, 37(3):165-168. [29] Simón MC, Andrés G, Viñuela E.Polyprotein processing in African swine fever virus:a novel gene expression strategy for a DNA virus[J]. Embo Journal, 1993, 12(7):2977-2987. [30] Simón MC, Andrés G, Almazán F, et al.Proteolytic processing in African swine fever virus:evidence for a new structural polyprotein, pp62[J]. J Virol, 1997, 71(8):5799-5804. [31] Hernáez B, Escribano JM, Alonso C.Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera[J]. Virology, 2006, 350(1):1-14. [32] Rodriguez JM, Garcia ER, Salas ML, et al.African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites[J]. J Virol, 2004, 78(8):4299-4313. [33] Hernáez B, Gema DG, Mónica GG, et al.The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis[J]. FEBS Lett, 2004, 569:224-228. [34] Alonso C, Miskin J, Hernáez B, et al.African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein[J]. J Virol, 2001, 75(20):9819-9827. [35] Gallardo C, Mwaengo DM, Macharia JM, et al.Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L(CVR)genes[J]. Virus Gen, 2009, 38(1):85-95. [36] Garcíamayoral MF, Rodríguezcrespo I, Bruix M.Structural models of DYNLL1 with interacting partners:African swine fever virus protein p54 and postsynaptic scaffolding protein gephyrin[J]. FEBS Lett, 2011, 585(1):53-57. [37] Cubillos C, Gómez SS, Moreno N, et al.African swine fever virus serodiagnosis:a general review with a focus on the analyses of African serum samples[J]. Virus Res, 2013, 173(1):159-167. [38] Barderas MG, Rodríguez F, Gómez PP, et al.Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins[J]. Arch Virol, 2001, 146(9):1681-1691. [39] 曹琛福, 梁云浩, 花群俊, 等. 非洲猪瘟病毒p54蛋白抗原表位预测及鉴定[J]. 中国预防兽医学报, 2014, 36(11):848-851. [40] Neilan JG, Zsak L, Lu Z, et al.Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection[J]. Virology, 2004, 319(2):337-342. [41] Irene R, María LN, Modesto RR, et al.The African swine fever virus virion membrane protein pE248R is required for virus infectivity and an early postentry event[J]. J Virol, 2009, 83(23):12290-300. [42] Bruno H, Guerra M, María LS, et al.African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes[J]. Plos Pathog, 2016, 12(4):1-32. [43] Senkevich TG, Ojeda S, Townsley A, et al., Poxvirus multiprotein entry-fusion complex[J]. Proc Natl Acad Sci USA, 2005, 102 (51):18572-18577. [44] Brookes SM, Sun H, Dixon LK, et al.Characterization of African swine fever virion proteins j5R and j13L:immuno-localization in virus particles and assembly sites[J]. J Gen Virol. 1998, 79:1179-1188. [45] Suárez C, Gutiérrez BJ, Andrés G, et al.African swine fever virus protein p17 is essential for the progression of viral membrane precursors toward icosahedral intermediates[J]. J Virol, 2010, 84(15):7484-7499. [46] Angulo A, Viñuela E, Alcamí A.Inhibition of African swine fever virus binding and infectivity by purified recombinant virus attachment protein p12[J]. J Virol, 1993, 67(9):5463-5469. [47] Camacho A, Viñuela E.Protein p22 of African swine fever virus:an early structural protein that is incorporated into the membrane of infected cells[J]. Virology, 1991, 181(1):251-257. [48] 孙怀昌, Dixon LK, Arkhouse RME .非洲猪瘟病毒j5R膜蛋白的电脑预测和实验证实[J]. 中国病毒学, 1999, 14(3):236-243. [49] Lithgow P, Takamatsu H, Werling D, et al.Correlation of cell surface marker expression with African swine fever virus infection[J]. Vet Microbiol, 2014, 168(2-4):413-419. [50] Sánchez EG, Quintas A, Nogal M, et al.African swine fever virus controls the host transcription and cellular machinery of protein synthesis[J]. Virus Res, 2013, 173(1):58-75. [51] Alexandre L, Malur A, Cornelis P, et al.Identification of a 25-aminoacid sequence from the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system[J]. J Virol Methods, 1998, 75(1):113-120. [52] Keita D, Heath L, Albina E.Control of African swine fever virus replication by small interfering RNA targeting the A151R and VP72 genes[J]. Antivir Ther, 2010, 15(5):727-736. [53] Muangkram Y, Sukmak M, Wajjwalku W.Phylogeographic analysis of African swine fever virus based on the p72 gene sequence[J]. Genet Mol Res, 2015, 14(2):4566-4574. [54] Chen X, Yang J, Ji Y, et al.Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice[J]. Virol Sin, 2016, 31(2):1-10. [55] 李秋霞, 滕达, 童德文, 等. 非洲猪瘟病毒VP73基因主要抗原表位区的融合原核表达[J]. 中国生物工程杂志, 2010, 30(2):60-65. [56] 靳雯雯, 杨晓红, 朱碧波, 等. 非洲猪瘟病毒VP73基因在哺乳动物细胞中的表达[J]. 中国预防兽医学报, 2014, 36(7):574-576. [57] Sastre P, Pérez T, Costa S, et al.Development of a duplex lateral flow assay for simultaneous detection of antibodies against African and Classical swine fever viruses[J]. J Vet Diagn Invest, 2016, 28(5):543-549. [58] 李倩, 姚淑霞. 非洲猪瘟病毒VP73蛋白的B细胞表位预测 [J]. 农业科学与技术, 2008, 36(1):7680-7682. [59] Andrés G, Garcíaescudero R, Viñuela E, et al.African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity[J]. J Virol, 2001, 75(15):6758-6768. [60] Alfonso P, José I, Quetglas, et al. Protein pE120R of African swine fever virus is post-translationally acetylated as revealed by post-source decay MALDI mass spectrometry[J]. Virus Gen, 2007, 35(1):81-85. [61] Epifano C, Krijnse LJ, Salas ML, et al.Generation of filamentous instead of icosahedral particles by repression of African swine fever virus structural protein pB438L[J]. J Virol, 2006, 80(23):11456-11466. [62] Galindo I, Uela EV, Carrascosa AL.Characterization of the African swine fever virus protein p49:a new late structural polypeptide[J]. J Gen Virol, 2000, 81(1):59-65. [63] Goatley LC, Dixon LK.Processing and localization of the African swine fever virus CD2v transmembrane protein[J]. J Virol, 2011, 85(7):3294-3305. [64] Jackson PC, Goatley LC, Cox L, et al.The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7[J]. J Gen Virol, 2004, 85(1):119-130. [65] Rowlands RJ, Duarte MM, Boinas F, et al.The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus[J]. Virology, 2009, 393(2):319-328. [66] Burmakina G, Malogolovkin A, Tulman ER, et al.African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever[J]. J Gen Virol, 2016, 97(7):1670-1675. [67] Sanna G, Dei GS, Bacciu D, et al.Improved strategy for molecular characterization of African swine fever viruses from Sardinia, based on analysis of p30, CD2V and I73R/I329L variable regions[J]. Trans Emerg Dis, 2017, 64(4):1280-1286. [68] Malogolovkin A, Burmakina G, Tulman ER, et al.African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity[J]. J Gen Virol, 2015, 96(4):866-873. [69] Galindo I, Viñuela E, Carrascosa AL.Protein cell receptors mediate the saturable interaction of African swine fever virus attachment protein p12 with the surface of permissive cells[J]. Virus Res, 1997, 49(2):193-204. [70] 陈腾, 张守峰, 周鑫韬, 等. 我国首次非洲猪瘟疫情的发现和流行分析[J]. 中国兽医学报, 2018(9):1831-1832. [71] Dennis N .Arrival of deadly pig disease could spell disaster for China[J]. Science, 2018, 361(6404):741-741. [72] 欧云文, 马小元, 王俊, 等. 非洲猪瘟分子病原学及分子流行病学研究进展[J]. 中国兽医学报, 2018(2):416-420. [73] 欧云文, 阎传忠, 张杰, 等. 非洲猪瘟病毒的分子病原学及致病机理研究进展[J]. 中国畜牧兽医, 2017, 44(7):2139-2146. [74] 王西西, 陈青, 陈鸿军, 等. 非洲猪瘟病毒免疫逃逸相关蛋白研究进展[J]. 病毒学报, 2018(6):929-935. [75] 戈胜强, 吴晓东, 张志诚, 等. 非洲猪瘟疫苗研究进展[J]. 畜牧兽医学报, 2016, 47(1):10-15. |
[1] | HE Yu-hang, HU Tao, WU Zhen, HE Yu, CHENG An-chun, CHEN Shun. Establishment of YFV17D Non-infectious Reporter Replicon and Pseudovirus Packaging System [J]. Biotechnology Bulletin, 2023, 39(8): 165-172. |
[2] | SUN Ya-ling, LI Rui-ping, WANG Zhen-bao, ZHANG Shu, LIU Bing-jiang, HUO Yu-meng. A New Method for Onion Seed Disinfection and Aseptic Seedling Culture [J]. Biotechnology Bulletin, 2023, 39(4): 212-220. |
[3] | ZHAO Hong-hai, LIANG Chen, ZHANG Yu, DUAN Fang-meng, SONG Wen-wen, SHI Qian-qian, HUANG Wen-kun, PENG De-liang. Research Advances of Biology in Ditylenchus destructor Thorne,1945 [J]. Biotechnology Bulletin, 2021, 37(7): 45-55. |
[4] | ZHAO Hong-yuan, WANG Zhao, CHENG Wen-yu, MA Ning-ning, LI Man, WEI Xiao-li. Progress on Antiviral Agents Against African Swine Fever Virus [J]. Biotechnology Bulletin, 2021, 37(5): 174-181. |
[5] | WANG Cai-xia, DU Fang-yuan, LIN Xiang-mei, Grzegorz Wozniakowski, WANG Qin, FENG Chun-yan, WU Shao-qiang. Generation of a Vero Cell Line Stably Expressing African Swine Fever Virus P54 Protein [J]. Biotechnology Bulletin, 2020, 36(5): 139-144. |
[6] | YANG Meng-li, GAO Xi-xi, LIU Yuan-qiu, HU Dong-nan, LI Jia-jun, ZHANG Zhi-jian, ZOU Gui-wu, HUANG Guo-xian. Preliminary Study on Inducing Axillary Buds of Different Pinus serotina Explants [J]. Biotechnology Bulletin, 2018, 34(3): 128-135. |
[7] | QIU Yan-hong,WANG Chao-nan,ZHU Shui-fang. Research Advances on the Pathogenicity of Cucumber Mosaic Virus [J]. Biotechnology Bulletin, 2017, 33(9): 10-16. |
[8] | HU Yu, WANG Ling, BI Wu, TAN Lin, XING Dan, ZUO Fu-yuan. Research Progress of miR-1246 in Diseases [J]. Biotechnology Bulletin, 2017, 33(3): 29-36. |
[9] | LIN Jin-xing1, YANG Chi1, 2, FENG Li-ping1, HU Jian-hua1. Identification of Aeromonas hydrophila and Histopathological Observation of Artificial Infected Zebrafish [J]. Biotechnology Bulletin, 2016, 32(9): 239-245. |
[10] | WANG Ya, LIN Li, LI Bei-bei, HUANG Man-hong, CHEN Liang. Preparation of Hierarchical Microsphere BiOBr Catalyst and Its Photocatalytic Disinfection Performance Under Visible Light [J]. Biotechnology Bulletin, 2016, 32(8): 242-248. |
[11] | Gao Hang, Gao Yuliang, Li Kuihua. Optimization of Agrobacterium-mediated Transformation System for Brassica oleracea var. acephala with Hypocotyls as Explants [J]. Biotechnology Bulletin, 2015, 31(6): 111-115. |
[12] | Li Wei, Zhai Yujia, Li Pengcheng, Wang Changlu. Optimization of Agrobacterium-mediated Transformation in Castor(Ricinus communis L.) [J]. Biotechnology Bulletin, 2015, 31(5): 140-145. |
[13] | Wang Shihui, Shi Yuhong, Chen Jiong. Molecular Cloning, Sequence Analysis and Prokaryotic Expression of Sweetfish Macrophage Inflammatory Protein-2 Gene [J]. Biotechnology Bulletin, 2014, 0(7): 143-149. |
[14] | Liu Rongdiao, Ruan Lingwei. PI3K-Akt Signaling Pathway and Viral Infection [J]. Biotechnology Bulletin, 2013, 0(6): 53-62. |
[15] | Wang Linmei, Yue Dongmei, Li Shuying, Fan Qi, Ye Bo, Zhao Zhenjun, Zhang Bo. Study on Infection of Pupal Ovaries Cells of Antheraea pernyi with ApNPV [J]. Biotechnology Bulletin, 2013, 0(6): 172-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||