Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (3): 29-36.doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.005
Previous Articles Next Articles
HU Yu, WANG Ling, BI Wu, TAN Lin, XING Dan, ZUO Fu-yuan
Received:
2016-06-15
Online:
2017-03-26
Published:
2017-03-07
HU Yu, WANG Ling, BI Wu, TAN Lin, XING Dan, ZUO Fu-yuan. Research Progress of miR-1246 in Diseases[J]. Biotechnology Bulletin, 2017, 33(3): 29-36.
[1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4, encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [2] Dooley AL, Winslow MM, Chiang DY, et al. Nuclear factor I/B is an oncogene in small cell lung cancer[J]. Genes & Development, 2011, 25(14):1470-1475. [3] Kosaka N, Iguchi H, Ochiya T, et al. Circulating microRNA in body fluid:a new potential biomarker for cancer diagnosis and prognosis[J]. Cancer Science, 2010, 101(10):2087-2092. [4] Pigati L, Yaddanapudi SCS, Iyengar R, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells[J]. PLoS One, 2010, 5(10):e13515. [5] Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53[J]. Nature, 2009, 460(7254):529-533. [6] Liao JM, Zhou X. New insights into p53 functions through its target microRNAs[J]. J Mol Cell Biol, 2014, 6(3):206-213. [7] Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing[J]. Cell, 2005, 123(4):631-640. [8] Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output[J]. Nature, 2008, 455(7209):64-71. [9] Chen J, Yao D, Zhao S, et al. MiR-1246 promotes SiHa cervical cancer cell proliferation, invasion, and migration through suppression of its target gene thrombospondin 2[J]. Arch Gynecol Obstet, 2014, 4:725-732. [10] Kim H, Watkinson J, Varadan V, et al. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1[J]. American Geophysical Union, 2010, 3(4):367-376. [11] Doeberitz MVK, Rittmüller C, Hausen HZ, et al. Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV e6-e7 anti-sense RNA[J]. Int J Cancer NLM, 1992, 5:831-834. [12] Bosch FX, Ribes J, Díaz M, et al. Primary liver cancer:worldwide incidence and trends[J]. Gastroenterology, 2004, 127(5 Suppl 1):S5-S16. [13] Sun Z, Meng C, Wang S, et al. MicroRNA-1246 enhances migration and invasion through CADM1 in hepatocellular carcinoma[J]. Molecular Oncology, 2014, 14(1):1-11. [14] Zhang Q, Cao LY, Cheng SJ, et al. P53-induced microRNA-1246 inhibits the cell growth of human hepatocellular carcinoma cells by targeting NFIB[J]. Oncol Rep, 2015, 33(3):1335-1341. [15] Bouyssou JMC, Manier S, et al. Regulation of microRNAs in cancer metastasis[J]. Biochim Biophys Acta, 2014, 2:255-265. [16] Perry BC, Soltys D, Toledo AH, et al. Tumor necrosis factor-α in liver ischemia/reperfusion injury[J]. J Invest Surg, 2011, 24(4):178-188. [17] Leal JA, Lleonart ME. MicroRNAs and cancer stem cells:therapeutic approaches and future perspectives[J]. Cancer Lett, 2013, 338(1):174-183. [18] Huang W, Li H, Luo R, et al. The microRNA-1246 promotes metastasis in non-small cell lung cancer by targeting cytoplasmic polyadenylation element-binding protein 4[J]. Diagn Pathol, 2015, 10(1):1-10. [19] Kim G, An HJ, Lee MJ, et al. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer[J]. Lung Cancer, 2015, 91:15-22. [20] Antonarakis SE, Lyle R, Dermitzakis ET, et al. Chromosome 21 and down syndrome:from genomics to pathophysiology[J]. Nat Rev Genet, 2004, 5(10):725-738. [21] Becker W, Sippl W. Activation, regulation, and inhibition of DYRK1A[J]. Febs Journal, 2011, 278(2):246-256. [22] Yang EJ, Ahn YS, Chung KC, et al. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells[J]. J Biol Chem, 2001, 276(43):39819-39824. [23] Arron JR, Winslow MM, Polleri A, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21[J]. Nature, 2006, 441(7093):595-600. [24] Gwack Y, Sharma S, Nardone J, et al. A genome-wide drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT[J]. Nature, 2006, 441(441):646-650. [25] Woods Y, Rena GN, Barthel A, et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site[J]. Biochemical Journal, 2001, 355(Pt 3):597-607. [26] Liao JM, Zhou X, Zhang Y, et al. MiR-1246:a new link of the p53 family with cancer and down syndrome[J]. Cell Cycle, 2012, 11(14):2624-2630. [27] Zhang Y, Liao JM, Zeng SX, et al. P53 downregulates down syndrome-associated DYRK1A through miR-1246[J]. Embo Reports, 2011, 12(8):811-817. [28] Colebunders R, Borchert M. Ebola haemorrhagic fever - a review[J]. Journal of Infection, 2000, 40(1):16-20. [29] Sheng MM, Zhong Y, et al. Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of ebola virus glycoprotein in vitro[J]. Sci China Life Sci, 2014, 10:959-972. [30] Provencal M, Michaud M, Beaulieu E, et al. Tissue factor pathway inhibitor(TFPI)interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins[J]. Thromb Haemost, 2008, 99(3):576-585. [31] Chen J, Zhang B, Pan C, et al. Effects of monocyte chem-otactic protein-3 on ICAM-1, VCAM-1, TF, and TFPI expression and apoptosis in human umbilical vein endothelial cells[J]. Nan Fang Yi Ke Da xue xue Bao, 2013, 33:86-92. [32] Belkin AM, Smalheiser NR. Localization of cranin(dystroglycan)at sites of cell-matrix and cell-cell contact:recruitment to focal adhesions is dependent upon extracellular ligands[J]. Cell Adhesion & Communication, 1996, 4(4-5):281-296. [33] Brancaccio A. DAG1, no gene for RNA regulation[J]. Gene, 2012, 497(1):79-82. [34] Winckers K, Cate HT, Hackeng TM, et al. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis[J]. Blood Reviews, 2013, 27(3):119-132. [35] He MX, He YW. CFLAR/c-FLIPL:a star in the autophagy, apoptosis and necroptosis alliance[J]. Autophagy, 2013, 9(5):791-793. [36] Javierre BM, Richardson B. A new epigenetic challenge:systemic lupus erythematosus[J]. Adv Exp Med Biol, 2011, 711:117-136. [37] Liu A, La CA. Epigenetic dysregulation in systemic lupus erythematosus[J]. Autoimmunity, 2014, 47(4):215-219. [38] Deng Y, Tsao BP. Advances in lupus genetics and epigenetics[J]. Current Opinion in Rheumatology, 2014, 26(5):482-492. [39] Guo Y, Sawalha AH, Lu Q, et al. Epigenetics in the treatment of systemic lupus erythematosus:potential clinical application[J]. Clinical Immunology, 2014, 155(1):79-90. [40] Ming Z, Liu S, Luo S, et al. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype[J]. J Autoimmu, 2014, 54:127-136. [41] Yébenes VGD, Bartolomé-Izquierdo N, Ramiro AR, et al. Regula-tion of B-cell development and function by microRNAs[J]. Proc Spie, 2013, 253(1):25-39. [42] Luo S, Yu L, Liang G, et al. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus[J]. Clinical Epigenetics, 2015, 7(1):1-13. [43] Nair N, Kumar S, Gongora E, et al. Circulating miRNA as novel markers for diastolic dysfunction[J]. Molecular & Cellular Biochemistry, 2013, 376(1-2):33-40. [44] Melissa PH, Noura I, Zhang XL, et al. Detection of microRNA expression in human peripheral blood microvesicles[J]. PLoS One, 2008, 3(11):e3694. [45] Baraniskin A, Maike A, Steffen GJ, et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma[J]. Int J Cancer NLM, 2013, 132(2):E48-E57. [46] Pigati L, Yaddanapudi SCS, Iyengar R, et al. Selective release of microRNA species from normal and malignant mammary epithelial Cells[J]. PLoS One, 2010, 5(10):e13515. [47] Xu LJ, Jiang T, Zhao W, et al. Parallel mRNA and microRNA profiling of HEV71-infected human neuroblastoma cells reveal the up-regulation of miR-1246 in association with DLG3 repression[J]. PLoS One, 2014, 9(4):e95272-e95272. [48] Zheng Y, Chen KL, Zheng XM, et al. Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows[J]. Cell Stress Chaperones, 2014, 6:973-981. [49] Sarachana T, Dahiya N, Simhadri VL, et al. Small ncRNA expression-profiling of blood from hemophilia A patients identifies miR-1246 as a potential regulator of factor 8 gene[J]. PLoS One, 2015, 10(7):1-14 [50] Wang S, Zeng Y, Zhou JM, et al. MicroRNA-1246 promotes growth and metastasis of colorectal cancer cells involving CCNG2 reduction[J]. Mol Med Rep, 2016, 13(1):273-280. [51] Shan D, Ding X, Song X, et al. Roles of microRNAs in cardiovascular diseases therapeutics[J]. Chemistry of Life, 2013, 33(4):427-432. |
[1] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[2] | CHEN Cai-ping, REN Hao, LONG Teng-fei, HE Bing, LU Zhao-xiang, SUN Jian. Research Advances in the Treatment of Inflammation Bowel Disease Using Escherichia coli Nissle 1917 [J]. Biotechnology Bulletin, 2023, 39(6): 109-118. |
[3] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[4] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[5] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[6] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[7] | ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin [J]. Biotechnology Bulletin, 2023, 39(1): 243-252. |
[8] | WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3 [J]. Biotechnology Bulletin, 2022, 38(7): 31-39. |
[9] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[10] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[11] | ZHONG Ming-yue, LIU Chun-yan, YAN Yan, ZHANG Xiao-hui, YUAN Hai-sheng, XU Guo-quan, ZHANG He-ping, WANG Yu-zhen. Improvement Effect of Bifidobacterium lactis V9 on NAFLD Rats Induced by High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(3): 181-187. |
[12] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[13] | WANG Shu-xuan, XIANG Gang, MA Xiao-jing, YU Jing. Construction of Galectin-1 Overexpressing 4T1 Mammary Tumor Cells and Its Effects on the Proliferation and Migration [J]. Biotechnology Bulletin, 2022, 38(11): 97-103. |
[14] | ZHANG Ai-lian, BA Xue-li, WANG Dan-yang, ZHAO Bing. Effects of Crude Polysaccharide from Cistanche deserticola in Xinjiang on Foot-and-Mouth Disease Viral Vaccine Antibody and T cell Subgroup [J]. Biotechnology Bulletin, 2021, 37(9): 212-218. |
[15] | LIU Xiao-yi, YANG Jian, LIU Jing, WANG Bing, DAI Liang-ying, LI Wei. Research Progress in Heat Shock Transcription Factors in Oryza sativa [J]. Biotechnology Bulletin, 2021, 37(9): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||