[1] Burin EM.Genomics of cellulosic biofuels[J]. Nature, 2008, 454:841-845. [2] Deutscher J.The mechanisms of carbon catabolite repression in bacteria[J]. Current Opinion in Microbiology, 2008, 11(2):87-93. [3] Dien BS, Nichols NN, O’Bryan PJ, et al. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass[J]. Applied Biochemistry and Biotechnology, 2000, 84(1-9):181-196. [4] Saffen DW, Presper KA, Doering TL, et al.Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and ccr genes[J]. Journal of Biological Chemistry, 1987, 262:16241-16253. [5] Meins M, Jeno P, Muller D, et al.Cysteine phosphorylation of the glucose transporter of Escherichia coli[J]. Journal of Biological Chemistry, 1993, 268(16):11604-11609. [6] Deuscher J, Francke C, Postma PW.How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria[J]. Microbiology and Molecular Biology Reviews, 2006, 70(4):939-1031. [7] Sondej M, Sun JZ, Seok YJ, et al.Deduction of consensus binding sequences on proteins that bind IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease[J]. Proceedings of the National Academy of Sciences of the USA, 1999, 96(7):3525-3530. [8] Zeppenfeld T, Larisch C, Lengeler JW, et al.Glucose transporter mutants of Eshcerichia coli K-12 with changes in substrate recognition of IICBGlc and induction behavior of the ptsG gene[J]. Journal of Bacteriology, 2000, 182(16):4443-4452. [9] Nichols N, Dien B, Bothast R.Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol[J]. Applied Microbiology and Biotechnology, 2001, 56(1-2):120-125. [10] Liang L, Liu R, Li F, et al.Repetitive succinic acid production from lignocellulose hydrolysates by enhancedment of ATP supply in metaboically engineered Escherichia coli[J]. Bioresource Technology, 2013, 143(6):405-412. [11] 丁小云, 顾健健, 王永泽, 等. 产D-乳酸重组大肠杆菌ptsG基因的敲除及其混合糖同步发酵[J]. 生物技术通报, 2015, 31(12):221-226. [12] Yao R, Hirose Y, Sarkar D, et al.Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants[J]. Microbial Cell Factories, 2011, 10:67. [13] Chou CH, Bennett GN, San KY.Effect of modulated glucose uptake on high-level recombinant protein production in a dense Escherichia coli culture[J]. Biotechnology progress, 1994, 10:644-647. [14] McDonald TP, Walmsley AR, Henderson PJ, et al. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein(GalP)from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar[J]. Journal of Biological Chemistry, 1997, 272:15189-15199. [15] 严涛, 赵锦芳, 高文慧, 等. 大肠杆菌工程菌ptsG基因敲除及其缺陷株混合糖同型乙醇发酵[J]. 生物工程学报, 2013, 29(7):937-945. [16] Zhou S, Iverson A, Grayburn WS.Engineering a native homoethanol pathway in Escherichia coli B for ethanol production[J]. Biotechnology Letter, 2008, 30(2):335-342. [17] Chen K, Iverson AG, Garza EA, et al.Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose[J]. Biotechnology Letter, 2010, 32(1):87-96. [18] Zhou S, Iverson A, Grayburn WS.Doubling the catabolic reducing power(NADH)output of Escherichia coli fermentation for production of reduced products[J]. Biotechnology Progress, 2010, 26(1):45-51. [19] Zhou K, Zhou L, Lim QE, et al.Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR[J]. BMC Molecular Biology, 2011, 12:18-26. [20] Wyman C.Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power[J]. Biotechnology Progress, 2003, 19(2):254-262. [21] Khankal R, Chin JW, Cirino PC.Role of xylose transporters in xylitol production from engineered Escherichain coli[J]. Journal of Biotechnology, 2008, 134(3-4):246-252. [22] Gonzalez R, Tao H, Shanmugam KT, et al.Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose[J]. Biotechnology Progress, 2002, 18:6-20. [23] Khunnonkwao P, Jantama S. Kanchanatawee S, et al.Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium[J]. Applied Microbiology and Biotechnology, 2018, 102:127-141. |