Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (8): 178-185.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0098
Previous Articles Next Articles
YAN Wu-ping, WU You-gen, YU Jing ,YANG Dong-mei, ZHANG Jun-feng
Received:
2019-01-26
Online:
2019-08-26
Published:
2019-08-05
YAN Wu-ping, WU You-gen, YU Jing ,YANG Dong-mei, ZHANG Jun-feng. Research Progress and Prospect of microRNA in Medicinal Plants[J]. Biotechnology Bulletin, 2019, 35(8): 178-185.
[1] Yu Y, Jia TR, Chen XM.The ‘how’ and ‘where’ of plant microRNAs[J]. New Phytologist, 2017, 216(4):1002-1017. [2] Lee RC, Feinbaum RL, Ambros V.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [3] Wightman B, Ha I, Ruvkun G.Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75(5):855-862. [4] Reinhart BJ, Slack FJ, Basson M, et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772):901-906. [5] Slack FJ, Basson M, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor[J]. Molecular Cell, 2000, 5;(4):659-669. [6] Reinhart BJ, Weinstein EG, Rhoades MW, et al.MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626. [7] Xie M, Zhang SX, Yu B. microRNA biogenesis, degradation and activity in plants[J]. Cellular & Molecular Life Sciences, 2015, 72(1):87-99. [8] Fukudome A, Fukuhara T.Plant dicer-like proteins:double-stranded RNA-cleaving enzymes for small RNA biogenesis[J]. Journal of Plant Research, 2016, 130(1):1-12. [9] Kurihara Y, Watanabe Y.Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J]. Proc Natl Acad Sci USA, 2004, 101(34):12753-12758. [10] Liu CG, Axtell MJ, Fedoroff NV.The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis[J]. Plant Physiology, 2012, 159(2):748-758. [11] Song L, Axtell MJ, Fedoroff NV.RNA secondary Structural determinants of miRNA precursor processing in Arabidopsis[J]. Current Biology, 2010, 20(1):37-41. [12] Yu B, Yang ZY, Li JJ, et al.Methylation as a crucial step in plant microRNA biogenesis[J]. Science, 2005, 307(5711):932-935. [13] Yang ZY, Ebright YW, Yu B, et al.HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2’ OH of the 3' terminal nucleotide[J]. Nucleic Acids Research, 2006, 34(2):667-675. [14] Papp I, Mette MF, Aufsatz W, et al.Evidence for nuclear processing of plant microRNA and short interfering RNA precursors[J]. Plant Physiology, 2003, 132(3):1382-1390. [15] Park MY, Wu G, Gonzalez-Sulser A, et al.Nuclear processing and export of microRNAs in Arabidopsis[J]. Proc Natl Acad Sci USA, 2005, 102(10):3691-3696. [16] Rogersa K, Chen XM.Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant Cell, 2013, 25(7):2383-2399. [17] Liu QK, Wang F, Axtella MJ.Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay[J]. Plant Cell, 2014, 26(2):741. [18] Li JY, Reichel M, Millar AA.Determinants beyond both complementarity and cleavage govern microR159 efficacy in Arabidopsis[J]. PLoS Genetics, 2014, 10(3):e1004232. [19] German MA, Pillay M, Jeong DH, et al.Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology, 2008, 26(8):941-946. [20] Zhu HL, Hu FQ, Wang RH, et al.Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256. [21] Ji LJ, Liu XG, Yan J, et al.ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis[J]. PLoS Genetics, 2011, 7(3):e1001358. [22] Souret FF, Kastenmayer JP, Green PJ.AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets[J]. Molecular Cell, 2004, 15(2):173-183. [23] Aukerman MJ, Hajime S.Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. Plant Cell, 2003, 15(11):2730-2741. [24] Chen XM.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025. [25] Iwakawa HO, Tomari Y.Molecular insights into microRNA-mediated translational repression in plants[J]. Molecular Cell, 2013, 52(4):591-601. [26] Yang L, Wu G, Poethig RS.Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109(1):315-320. [27] Chen XM.MicroRNA biogenesis and function in plants[J]. FEBS Letters, 2005, 579(26):5923-5931. [28] Lanet E, Delannoy E, Sormani R, et al.Biochemical evidence for translational repression by Arabidopsis microRNAs[J]. Plant Cell, 2009, 21(6):1762-1768. [29] Li SB, Liu L, Zhuang XH, et al.MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis[J]. Cell, 2013, 153(3):562-574. [30] Yu X, Willmann MR, Anderson SJ, et al.Genome-wide mapping of uncapped and cleaved transcripts reveals a role for the nuclear mRNA cap-binding complex in co-translational RNA decay in Arabidopsis[J]. Plant Cell, 2016, 28(10):2385. [31] Zhang BH, Wang QL.MicroRNA-based biotechnology for plant improvement[J]. Journal of Cellular Physiology, 2015, 230(1):1-15. [32] Ding J, Ruan CJ, Guan Y, et al.Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing[J]. Scientific Reports, 2018, 8(1):4022. [33] He XF, Shenkute AG, Wang WH, et al.Characterization of conserved and novel microRNAs in Lilium lancifolium Thunb. by high-throughput sequencing[J]. Scientific Reports, 2018, 8(1):2880. [34] Nadiya F, Anjali N, Jinu T, et al.Deep sequencing identified potential miRNAs involved in defense response, stress and plant growth characteristics of wild genotypes of cardamom[J]. Plant Biology, 2019, 21:3-14. [35] Xu T, Wang B, Liu X, et al.Microarray-based identification of conserved microRNAs from Pinellia ternata[J]. Gene, 2012, 493(2):267-272. [36] Dong M, Yang DF, Lang QL, et al.Microarray and degradome sequencing reveal microRNA differential expression profiles and their targets in Pinellia pedatisecta[J]. PLoS One, 2012, 8(9):e75978. [37] Fan RY, Li YJ, Li CF, et al.Differential microRNA analysis of ;glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis;[J]. PLoS One, 2015, 10(9):e0139002. [38] Hao DC, Yang L, Xiao PG, et al.Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis[J]. Physiologia Plantarum, 2012, 146(4):388-403. [39] Gao ZH, Wei JH, Yang Y, et al.Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data[J]. Gene, 2012, 505(1):167-175. [40] Wei RC, Qiu DY, Wilson IW, et al.Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing[J]. BMC Genomics, 2015, 16(1):1-10. [41] Jung I, Kang H, Kim JU, et al.The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature[J]. BMC Systems Biology, 2018, 12(Suppl 2):27. [42] Boke H, Ozhuner E, Turktas M, et al.Regulation of the alkaloid biosynthesis by miRNA in opium poppy[J]. Plant Biotechnology Journal, 2015, 13(3):409-420. [43] Yang YH, Chen XJ, Chen JY, et. Identification of novel and conserved microRNAs in Rehmannia glutinosa L. by solexa sequencing[J]. Plant Molecular Biology Reporter, 2011, 29(4):986-996. [44] Li CF, Zhu YJ, Guo X, et al.Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple seqaluence repeats in Panax ginseng C. A. Meyer[J]. BMC Genomics, 2013, 14(1):245-245. [45] Kumar P, Padhan JK, Kumar A, et al.Transcriptomes of Podophyllum hexandrum unravel candidate miRNAs and their association with the biosynthesis of secondary metabolites[J]. Journal of Plant Biochemistry & Biotechnology, 2017, 27(1):1-9. [46] Singh N, Srivastava S, Shasany AK, et al.Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp.[J]. Computational Biology & Chemistry, 2016, 64:154-162. [47] 易小娅, 杨瑞瑞, 曾幼玲. 植物miRNA的研究方法概述[J]. 植物生理学报, 2015, 51(4):413-423. [48] Zheng Y, Chen K, Xu ZN, et al.Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels[J]. Sci Rep, 2017, 7(1):9418. [49] Singh A, Gautam V, Singh S, et al.Plant small RNAs:advancement in the understanding of biogenesis and role in plant development[J]. Planta, 2018, 248:545-558. [50] Samad AFA, Nazaruddin N, Murad AMA, et al.Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome[J]. Biotech, 2018, 8(3):136. [51] Axtell MJ, Bartel DP.Antiquity of microRNAs and their targets in land plants[J]. Plant Cell, 2005, 17(6):1658-1673. [52] Wang B, Dong M, Chen WD, et al.Microarray identification of conserved microRNAs in Pinellia pedatisecta[J]. Gene, 2012, 498(1):36-40. [53] 卢鋆, 高伟, 黄璐琦. 药用植物microRNA与次生代谢产物的合成调控[J]. 中国中药杂志, 2018, 43(9):1806-1811. [54] Li FF, Wang WD, Zhao N, et al.Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco[J]. Plant Physiology, 2015, 169:1062-1071. [55] Pérez-Quintero ÁL, Sablok G, Conesa A, et al.Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua[J]. Biotechnology Letters, 2012, 34(4):737-745. [56] Kumar R.Role of microRNAs in biotic and abiotic stress responses in crop plants[J]. Applied Biochemistry & Biotechnology, 2014, 174(1):93-115. [57] Sun X, Lin L, Sui N. Regulation mechanism of microRNA in plant response to abiotic stress and breeding[J]. Molecular Biology Reports, 2018, (4). [58] Wu B, Wang MZ, Ma YM, et al.High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng[J]. PLoS One, 2012, 7(9):e44385. [59] 苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药, 2005, 36(9):1415-1418. [60] Najafabadi AS, Naghavi MR.Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes[J]. Gene, 2017, 645:41-47. [61] Gandhi SG, Mahajan V, Bedi YS.Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants[J]. Planta, 2015, 241(2):303-317. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[3] | ZHENG Min-min, LIU Jie, ZHAO Qing. Research Progress and Prospects of Biological Studies on the Medicinal Plant Scutellaria baicalensis [J]. Biotechnology Bulletin, 2023, 39(2): 10-23. |
[4] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[5] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[6] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[7] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[8] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[9] | ZHANG Hao, LIU Miao-miao, LIU Xiao-na, LI Zong-yu, ZHAO Li-li, YANG Qing-xiang. Impact of Endophytic Microorganisms on the Pharmaco-active Compounds Production in Medicinal Plants:A Review [J]. Biotechnology Bulletin, 2022, 38(8): 41-51. |
[10] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
[11] | LI Xiao-fan, GENG Dan-dan, BI Yu-lin, JIANG Yong, WANG Zhi-xiu, CHANG Guo-bin, CHEN Guo-hong, BAI Hao. Research Progress in Unconventional miRNA Functions [J]. Biotechnology Bulletin, 2022, 38(12): 1-10. |
[12] | ZHAO Yu-xue, WANG Yun, YU Lu-yao, LIU Jing-jing, SI Jin-ping, ZHANG Xin-feng, ZHANG Lei. Structure and Application of C-glycosyltransferases in Plants [J]. Biotechnology Bulletin, 2022, 38(10): 18-28. |
[13] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[14] | CHEN Li-jie, YANG Fan, FAN Hai-yan, ZHAO Di, WANG Yuan-yuan, ZHU Xiao-feng, LIU Xiao-yu, DUAN Yu-xi. Advances of Non-coding RNA in Interactions Among Biocontrol Bacteria and Plant Nematodes and Host [J]. Biotechnology Bulletin, 2021, 37(7): 65-70. |
[15] | ZHANG Cui-ju, MO Bei-xin, CHEN Xue-mei, CUI Jie. Advances on the Molecular Action Mechanisms of Plant miRNA [J]. Biotechnology Bulletin, 2020, 36(7): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||