Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (9): 45-52.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0398
Previous Articles Next Articles
QIU Shi-zheng, LI Jia-yi, YANG Jing-chen, LIU Chang-li
Received:
2019-05-09
Online:
2019-09-26
Published:
2019-09-16
QIU Shi-zheng, LI Jia-yi, YANG Jing-chen, LIU Chang-li. Research Progress of Low-cost Method of Synthetizing Polyhydroxyalkanoates(PHAs)[J]. Biotechnology Bulletin, 2019, 35(9): 45-52.
[1] Elmowafy E, Abdal-Hay A, Skouras A, et al.Polyhydroxyalkanoate(PHA):applications in drug delivery and tissue engineering[J]. Expert Review of Medical Devices, 2019, 16(6):467-482. [2] Ong SY, Zainab-L I, Pyary S, et al.A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals[J]. Applied Microbiology and Biotechnologyl, 2018, 102(5):2117-2127. [3] Poli A, Di Donato P, Abbamondi GR, et al.Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea[J]. Archaea, 2011:693253. [4] Keshavarz T, Roy I.Polyhydroxyalkanoates:bioplastics with a green agenda[J]. Current Opinion in Microbiology, 2010, 13:321-326. [5] Albuquerque MG, Martino V, Pollet E, et al.Reis, Mixed culture polyhydroxyalkanoate(PHA)production from volatile fatty acid(VFA)-rich streams:Effect of substrate composition and feeding regime on PHA productivity, composition and properties[J]. Journal of Biotechnology, 2011, 151:66-76. [6] Singh AK, Srivastava K, Chandel AK, et al.Biomedical applications of microbially engineered polyhydroxyalkanoates:an insight into recent advances, bottlenecks, and solutions[J]. Applied Microbiology and Biotechnology, 2019, 103:2007-2032. [7] Yeo JCC, Muiruri JK, Thitsartarn W, et al.Recent advances in the development of biodegradable PHB-based toughening materials:approaches, advantages and applications[J]. Mater Sci Eng C Mater Biol Appl, 2017, 92:1092-1116. [8] Ali I, Jamil N.Polyhydroxyalkanoates:current applications in the medical field[J]. Frontiers in Biology, 2016, 11:19-27. [9] He Y, Hu Z, Ren M, et al.Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures[J]. Journal of Materials Science:Materials in Medicine, 2014, 25:561-571. [10] Butt FI, Muhammad N, Hamid A.Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications-Review[J]. International Journal of Biological Macromolecules, 2018, 120:1294-1305. [11] Kynadi AS, Suchithra TV.Formulation and optimization of a novel media comprising rubber seed oil for PHA production[J]. Industrial Crops and Products, 2017, 105:156-163. [12] Park SJ, Kang KH, Lee H, et al.Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli[J]. Journal of Biotechnology, 2013, 165:93-98. [13] Thai TQ, Wille M, Garcia-Gonzalez L, et al.Poly-β-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae[J]. Applied Microbiology and Biotechnology, 2014, 98(11):5205-5215. [14] Che XM, Situ W, Yu LS, et al.Application perspectives of polyhydroxyalkanoates[J]. Chinese Journal of Biotechnology, 2018, 34(10):1531-1542. [15] Srirangan K, Liu X, Tran TT, et al.Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)copolymer using unrelated carbon sources[J]. Scientific Reports, 2016, 6:36470. [16] Wang Q, Liu X, Qi Q.Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2014, 98(9):3923-3931. [17] Tao W, Lv L, Chen GQ.Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi[J]. Microbial Cell Factories, 2017, 16(1):48. [18] Wang J, Ma W, Wang Y, et al.Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida[J]. Applied Microbiology and Biotechnology, 2018, 102(24):10523-10539. [19] Lieder S, Nikel PI, de Lorenzo V, et al. Genome reduction boosts heterologous gene expression in Pseudomonas putida[J]. Microb Cell Factories, 2015, 14:23. [20] Shen R, Yin J, Ye JW, et al.Promoter engineering for enhanced P(3HB- co-4HB)production by Halomonas bluephagenesis[J]. ACS Synthetic Biology, 2018, 7(8):1897-1906. [21] Choi JI, Lee SY, Han K.Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of Poly(3-hydroxybutyrate)in Escherichia coli[J]. Applied Environmental and Microbiology, 1998, 64(12):4897-4903. [22] Wang F, Lee SY.Production of poly(3-hydroxybutyrate)by fed-batch culture of filamentation-suppressed recombinant Escherichia coli[J]. Applied Environmental and Microbiology, 1997, 63(12):4765-4769. [23] Kraak MN, Smits TH, Kessler B, et al.Polymerase C1 levels and poly(R-3-hydroxyalkanoate)synthesis in wild-type and recombinant Pseudomonas strains[J]. Journal of Bacteriology, 1997, 179(16):4985-4991. [24] Możejko-Ciesielska J, Kiewisz R.Bacterial polyhydroxyalkanoates:Still fabulous?[J]. Microbiological Research, 2016, 192:271-282. [25] Quispe CAG, Coronado CJR, Carvalho JAJ.Glycerol:production, con- sumption, prices, characterization and new trends in combustion[J]. Renewable and Sustainable Energy Reviews, 2013, 27:475-493. [26] Pan C, Tan GA, Ge L, et al.Two-stage microbial conversion of crude glycerol to 1, 3-propanediol and polyhydroxyalkanoates after pretreatment[J]. Journal of Environmental Management, 2019, 232:615-624. [27] Możejko-Ciesielska J, Pokoj T.Exploring nutrient limitation for polyhydroxyalkanoates synthesis by newly isolated strains of Aeromonas sp. using biodiesel-derived glycerol as a substrate[J]. The Journal of Life and Environmental Sciences, 2018, 6:e5838. [28] Volova T, Demidenko A, Kiselev E, et al.Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production[J]. Appl Microbiol Biotechnol, 2019, 103(1):225-237. [29] Chin MJ, Poh PE, Tey BT, et al.Biogas from palm oil mill effluent(POME):Opportunities and challenges from Malaysia’s perspective[J]. Renewable and Sustainable Energy Reviews, 2013, 26:717-726. [30] Kellerhals MB, Kessler B, Tchouboukov A, et al.Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates(mcl-PHAs)at laboratory and pilot plant scales[J]. Macromolecules, 2000, 33:4690-4698. [31] Kang DK, Lee CR, Lee SH, et al.Production of Polyhydroxyalkano-ates from sludge palm oil using Pseudomonas putida S12[J]. Journal of Microbiology and Biotechnology, 2017, 27(5):990-994. [32] Ward PG, O’Connor KE. Bacterial synthesis of polyhydroxyal-kanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3[J]. International Journal of Biological Macromoleculesl, 2005, 35:127-133. [33] Kumar P, Maharjan A, Jun HB, et al.Bioconversion of lignin and its derivatives into polyhydroxyalkanoates:Challenges and opportunities[J]. Biotechnology and Applied Biochemistry, 2018, 66(2):153-162. [34] Bledzki AK, Mamun AA, Volk J.Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their prolypropylene composites[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41:480-488. [35] Cesário MT, Raposo RS, de Almeida MC, et al. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosi chydrolysates[J]. New Biotechnology, 2014, 31(1):104-113. [36] Li T, Elhadi D, Chen GQ.Co-production of microbial polyhydroxyalkanoates with other chemicals[J]. Metabolic Engineering, 2017, 43(Pt A):29-36. [37] Gu, P, Yang, F, Kang, J, et al.One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli[J]. Microbial Cell Factories, 2012, 11:30-38. [38] Gu, P, Kang, J, Yang, F, et al.The improved L-tryptophan production in recombinant Escherichia coli by expressing the polyhydroxybutyrate synthesis pathway[J]. Applied Microbiology and Biotechnology, 2013, 97:4121-4127. [39] Tohme S, Hacıosmanoğlu GG, Eroğlu MS, et al.Halomonas smyrnensis as a cell factory for co-production of PHB and levan[J]. International Journal of Biological Macromolecules, 2018, 118(Pt A):1238-1246. [40] Norhafini H, Huong KH, Amirul AA.High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB)copolymer production by transformant Cupriavidus malaysiensis USMAA1020[J]. International Journal of Biological Macromolecules, 2019, 125:1024-1032. [41] Yin J, Che XM, Chen GQ.Progress on polyhydroxyalkanoates(PHA)[J]. Chinese Journal of Biotechnology, 2016, 32(6):726-737. [42] Foong CP, Higuchi-Takeuchi M, Numata K.Optimal iron concentr-ations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition[J]. PLoS One, 2019, 14(4):e0212654. [43] Fradinho JC, Oehmen A, Reis MAM.Improving polyhydroxyalkan-oates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions[J]. International Journal of Biological Macromolecules, 2019, 126:1085-1092. [44] Kamravamanesh D, Lackner M, Herwig C.Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in Cyanobacteria[J]. Bioengineering, 2018, 5(4):111. [45] 陈国强, 魏岱旭. 微生物聚羟基脂肪酸脂[M]. 北京:化学工业出版社, 2014. [46] Rodriguez-Perez S, Serrano A, Pantión AA, et al.Challenges of scaling-up PHA production from waste streams. A review[J]. Journal of Environmental Management, 2018, 205:215-230. |
[1] | PAN Hu, ZHOU Zi-qiong, TIAN Yun. Screening Identification and Degradation Characteristics of Three Iprodione-degrading Strains [J]. Biotechnology Bulletin, 2023, 39(6): 298-307. |
[2] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[3] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
[4] | MA Qing-yun, JIANG Xu, LI Qing-qing, SONG Jin-long, ZHOU Yi-qing, RUAN Zhi-yong. Isolation and Identification of Nicosulfuron Degrading Strain Chryseobacterium sp. LAM-M5 and Study on Its Degradation Pathway [J]. Biotechnology Bulletin, 2022, 38(2): 113-122. |
[5] | LI Meng-fan, XIE Yun-xuan, XIE Ning-dong, ZHANG Ai-qing, WANG Guang-yi. Research Status in the Production of Squalene by Thraustochytrids [J]. Biotechnology Bulletin, 2021, 37(4): 234-244. |
[6] | YUE Li-xiao, LI Deng-yun, ZHANG Jing-jing, TONG Lei. Isolation and Application Potential Exploration of a Diuron-degrading Bacterium [J]. Biotechnology Bulletin, 2020, 36(6): 110-119. |
[7] | ZHANG Lin-yi, SONG Chen, XU Yao-yao, WANG Jia-ning, WANG Jin, YUE Zheng-bo, LIU Xiao-ling. Screening of an Effective Sulfur-oxidizing Strain and Its Main Bio-oxidation Metabolic Pathway of S2- [J]. Biotechnology Bulletin, 2020, 36(10): 105-115. |
[8] | LI Ran, HUANG Yu-qing, JIA Zhen-hua. Research of Progress of Strategy and Application of Metabolic Pathway Modification in Escherichia coli [J]. Biotechnology Bulletin, 2019, 35(8): 232-237. |
[9] | TANG Xian, DING Xiang, DONG Ming-ming, ZHU Miao, SONG Zhi-qiang, HOU Yi-ling. Transcriptome Analysis of Clavariadelphus pistillaris Fruiting Bodies at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(10): 119-129. |
[10] | WANG Jia-yi FAN, Shuang-hu, REN Chao, WANG Jun-huan, YANG Ting, JIA Yang, LI Xian-jun, YAN Yan-chun. Identification of Newly Isolated Xanthobacter sp. and Its Degradability to Phthalic Acid Esters [J]. Biotechnology Bulletin, 2018, 34(10): 157-164. |
[11] | MA Fu-qiang, YANG Guang-yu. Ultra-high-throughput Screening System Based on Droplet Microfluidics and Its Applications in Synthetic Biology [J]. Biotechnology Bulletin, 2017, 33(1): 83-92. |
[12] | MAO Jia-ling, XU Lin, YAN Ming. Construction and Characterization of the Pathways of Synthesizing Lactate in Vitro Related to NADP(H) [J]. Biotechnology Bulletin, 2016, 32(9): 260-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||