Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 158-168.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0727
Previous Articles Next Articles
ZHU Jian-feng, YANG Xiu-yan, WU Hai-wen, ZHANG Hua-xin
Received:
2019-08-15
Online:
2020-02-26
Published:
2020-02-23
ZHU Jian-feng, YANG Xiu-yan, WU Hai-wen, ZHANG Hua-xin. Research Advances in Salt and Alkali Tolerance Improvement Technology at the Seed Germination Stage[J]. Biotechnology Bulletin, 2020, 36(2): 158-168.
[1] 张红生, 胡晋. 种子学[M]. 第2版:北京:科学出版社, 2015. [2] Yuan X, Wen B.Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China[J]. PLoS One, 2018, 13(1):e0191710. [3] 熊元基, 姚帮松, Ninghu S, 等. 不同加氧处理对超级稻种子萌发和幼苗农艺性状的影响[J]. 江西农业大学学报, 2014, 36(2):256-260. [4] Liu J, Hasanuzzaman M, Wen H, et al.High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice[J]. Protoplasma, 2019, 256(5):1217-1227. [5] Merai Z, Graeber K, Wilhelmsson P, et al.Aethionema arabicum:a novel model plant to study the light control of seed germination[J]. Journal of Experimental Botany, 2019, 70(12):3313-3328. [6] 王爱国, 关云凌, 刘淑娴, 等. 氧和二氧化碳对水稻萌发的影响[J]. 植物生理学通讯, 1981(2):20-24. [7] Ye X, Wang H, Cao X, et al.Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress[J]. BMC Genomics, 2019, 20:589. [8] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京:科学出版社, 1993. [9] 刘晓威, 杨秀艳, 武海雯, 等. NaCl胁迫对红砂萌发的影响及萌发期耐盐性评价[J]. 生物技术通报, 2019, 35(1):27-34. [10] 刘晓威, 杨秀艳, 武海雯, 等. NaCl胁迫下红砂种子萌动期差异表达基因的转录组分析[J]. 南京林业大学学报:自然科学版, 2019, 43(3):28-36. [11] 刘晓威, 杨秀艳, 刘正祥, 等. MicroRNA在植物抵御盐胁迫过程中的作用[J]. 生物技术通报, 2017, 33(12):12-21. [12] 马红媛, 梁正伟. 不同pH值土壤及其浸提液对羊草种子萌发和幼苗生长的影响[J]. 植物学通报, 2007, 24(2):181-188. [13] 李庆贱, 陈志强, 时瑞亭, 等. 白榆家系苗期耐盐碱研究[J]. 北京林业大学学报, 2010, 32(5):74-81. [14] 刘炳响, 王志刚, 杨敏生, 等. 模拟盐胁迫对白榆种子发芽、出苗及幼苗生长的影响[J]. 草业学报, 2012, 21(5):39-46. [15] 袁小环, 武菊英, 杨学军, 等. 基于半致死浓度的观赏草萌发期和幼苗期耐盐性评价[J]. 中国草地学报, 2012(6):49-53. [16] 渠晓霞, 黄振英. 盐生植物种子萌发对环境的适应对策[J]. 生态学报, 2005(9):2389-2398. [17] 叶小齐, 吴明, 王琦, 等. 杭州湾4种植物盐胁迫下种子萌发能力与分布的关系[J]. 浙江农林大学学报, 2012, 29(5):739-743. [18] Jisha KC, Vijayakumari K, Puthur JT.Seed priming for abiotic stress tolerance:an overview[J]. Acta Physiologiae Plantarum, 2013, 35(5):1381-1396. [19] 楼坚锋, 解秀娟, 胡晋, 等. 不同引发处理对紫花苜蓿种子在盐逆境下发芽及幼苗生理生化变化的影响[J]. 上海农业学报, 2004(3):86-89. [20] Nakaune M, Hanada A, Yin YG, et al.Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato[J]. Plant Physiology and Biochemistry, 2012, 52:28-37. [21] 杨若鹏, 赵欣, 李许华, 等. 珍珠岩引发对盐胁迫下青椒种子萌发和幼苗生长的影响[J]. 云南农业大学学报:自然科学版, 2018, 33(3):468-473. [22] 宰学明, 吴国荣, 陆长梅, 等. 低温预处理对大豆萌芽活力及其活性氧代谢的影响[J]. 大豆科学, 2001, 20(3):163-166. [23] 曹帮华, 翟明普, 吴丽云. 低温预处理对刺槐种子抗盐萌发的影响[J]. 北京林业大学学报, 2005, 27(4):39-42. [24] 李妹娟, 唐湘如, 聂俊, 等. 在盐胁迫下超声波处理对籼稻种子萌发的影响[J]. 西南农业学报, 2014, 27(6):2440-2443. [25] 宋沁春, 魏开, 漆冬梅, 等. 盐胁迫下超声波处理对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2018, 37(3):83-85. [26] 袁德正, 杨体强. 电场处理对赤葵种子萌发期发芽率抗盐性的影响[J]. 内蒙古大学学报:自然科学版, 2009, 40(5):630-633. [27] 韩多红, 李善家, 王恩军, 等. 外源钙对盐胁迫下黑果枸杞种子萌发和幼苗生理特性的影响[J]. 中国中药杂志, 2014, 39(1):34-39. [28] 毛桂莲, 马春燕, 谢亚军, 等. CaSO4对盐碱胁迫下油葵种子萌发的影响[J]. 农业科学研究, 2009, 30(3):21-23, 43. [29] 文锦芬, 邓明华, 赵凯. 外源Mn2+对盐胁迫下辣椒种子萌发的影响[J]. 辣椒杂志, 2009, 7(4):26-29. [30] 汤菊香, 王振河, 苏长涛, 等. Mn2+和Mo6+对棉花种子发芽耐盐性的影响[J]. 安徽农业科学, 2005(9):1589-1600. [31] 纪灵霄, 杨洪兵. K+和Mg2+对盐胁迫下荞麦种子萌发及幼苗生长的影响[J]. 广东农业科学, 2013, 40(17):52-53, 56. [32] 樊哲仁, 王晓东, 唐琳. 硅对盐胁迫下麻疯树种子萌发及幼苗生长的影响[J]. 中国油料作物学报, 2010, 32(2):217-221. [33] 吕春晖, 牛红军, 齐菲, 等. 铈对盐胁迫下小麦种子萌发过程中生理指标的影响[J]. 农业科技与装备, 2014(6):8-9, 11. [34] 韩广泉, 李俊, 宋曼曼, 等. 硒对盐胁迫下加工番茄种子萌发及抗氧化酶系统的影响[J]. 石河子大学学报:自然科学版, 2010, 28(4):422-426. [35] 赵秋月, 邓蓉, 蒲巧. 稀土微肥对盐胁迫下番茄种子萌发的影响[J]. 绵阳师范学院学报, 2018, 37(5):55-60. [36] 赵晓菊, 张丽霞, 满秀玲. NO对盐胁迫下长春花种子萌发和幼苗生理代谢的影响[J]. 植物研究, 2018, 38(5):669-674, 681. [37] 董亚茹, 赵东晓, 杜建勋, 等. 外源NO对NaCl胁迫下桑树种子萌发及幼苗生理生化特性的影响[J]. 蚕业科学, 2018, 44(6):821-82. [38] 张春平, 何平, 刘海英, 等. 外源CO供体高铁血红蛋白对盐胁迫下决明种子萌发及幼苗生理特性的影响[J]. 中国中药杂志, 2012, 37(2):189-197. [39] Liu K, Xu S, Xuan W, et al.Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa[J]. Plant Science, 2006, 172(3):544-555. [40] 鲍敬, 丁同楼, 贾文娟, 等. 外源H2S对盐胁迫下小麦种子萌发的影响[J]. 现代农业科技, 2011(20):40-42. [41] Li X, Pan Y, Chang B, et al.NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis[J]. Frontiers in Plant Science, 2016, 6:1203. [42] Lee S, Kim SG, Park CM.Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis[J]. New Phytologist, 2010, 188(2):626-637. [43] 李永洁, 李进, 吕海英, 等. 不同浓度水杨酸(SA)浸种对盐旱交叉胁迫下黑果枸杞种子萌发的影响[J]. 种子, 2014, 33(8):34-38, 43. [44] 张丽丽, 倪善君, 张战, 等. 外源赤霉素对盐胁迫下水稻种子萌发及幼苗生长的缓释效应[J]. 中国稻米, 2018, 24(2):42-46. [45] Muhammad J, Shik RE.Gibberellic acid(GA3)enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress[J]. Pakistan Journal of Biological Sciences, 2007, 10(4):654-658. [46] 吴雪霞, 查丁石, 朱宗文, 等. 外源24-表油菜素内酯对盐胁迫下茄子种子萌发和幼苗生理特性的影响[J]. 植物生理学报, 2011, 47(6):607-612. [47] 杨艺, 常丹, 王艳, 等. 盐胁迫下茉莉酸(JA)及茉莉酸甲酯(MeJA)对棉花种子萌发及种苗生化特性的影响[J]. 种子, 2015, 34(1):8-13, 18. [48] 刘建霞, 张晓丹, 王润梅, 等. 6-BA浸种对盐胁迫下绿豆萌发及幼苗生理特性的影响[J]. 作物杂志, 2018(1):166-172. [49] 王玉萍, 于丹, 李成, 等. 壳聚糖对盐胁迫下小麦种子萌发及幼苗生理特性的影响[J]. 干旱地区农业研究, 2016, 34(1):180-185. [50] 赵莹, 杨克军, 李佐同, 等. 外源糖浸种缓解盐胁迫下玉米种子萌发[J]. 应用生态学报, 2015, 26(9):2735-2742. [51] Hu M, Shi Z, Zhang Z, et al.Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress[J]. Plant Growth Regulation, 2012, 68(2):177-188. [52] 杨巧玲, 杨晓梅, 闫道良, 等. 外源海藻糖对盐胁迫下海滨锦葵种子萌发的影响[J]. 江西林业科技, 2014, 42(2):1-4, 33. [53] Arora M, Kaushik A, Rani N, et al.Effect of cyanobacterial exopol-ysaccharides on salt stress alleviation and seed germination[J]. Journal of Environmental Biology, 2010, 31(5):701-704. [54] 江绪文, 李贺勤, 王建华. 盐胁迫下黄芩种子萌发及幼苗对外源抗坏血酸的生理响应[J]. 植物生理学报, 2015, 51(2):166-170. [55] 孙西丽, 赵方贵, 张英昊, 等. 外源维生素对盐胁迫下玉米种子萌发和某些生理指标的影响[J]. 青岛农业大学学报:自然科学版, 2009, 26(4):313-317. [56] 刘金龙, 辛寒晓, 范学明, 等. 盐胁迫下鱼蛋白多肽对樱桃番茄种子发芽特性的影响[J]. 江苏农业学报, 2017, 33(3):662-666. [57] 杨洪兵. 氨基酸对盐胁迫荞麦种子萌发及幼苗生长的影响[J]. 贵州农业科学, 2014, 42(8):30-33. [58] Chang C, Wang B, Shi L, et al.Alleviation of salt stress-induced inhibition of seed germination in cucumber(Cucumis sativus L.)by ethylene and glutamate[J]. Journal of Plant Physiology, 2010, 167(14):1152-1156. [59] 张春平, 何平, 喻泽莉, 等. 亚精胺对盐胁迫下紫苏种子萌发和幼苗生理特性的影响[J]. 中草药, 2011, 42(7):1407-1412. [60] 胡晓辉. 腐胺对盐胁迫下番茄种子萌发的影响[J]. 安徽农业科学, 2009, 37(4):1432-1433. [61] 张元, 冯琼, 杨小方, 等. 黄腐酸对盐胁迫下红花种子萌发及幼苗生理特性的影响[J]. 河南农业科学, 2015, 44(11):24-27. [62] 郭伟, 于立河. 腐植酸浸种对盐胁迫下小麦萌发种子及幼苗生理特性的影响[J]. 麦类作物学报, 2012, 32(1):90-96. [63] 陈智坤, 邓娴, 王峰伟, 等. 蘑菇渣堆肥滤液对盐胁迫下黄芩种子萌发和幼苗生长的影响[J]. 北方园艺, 2016(18):149-153. [64] 李善家, 韩多红, 王恩军, 等. 外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响[J]. 草业科学, 2016, 33(4):674-680. [65] 范春丽, 曲金柱. 甜菜碱浸种对盐胁迫下石榴种子萌发及幼苗生理特性的影响[J]. 中国果树, 2015(6):51-54. [66] 陈楚, 张云芳, 荆小燕. 氯化胆碱浸种处理对盐胁迫下小麦种子萌发以及幼苗生长的影响[J]. 麦类作物学报, 2013, 33(5):1030-1034. [67] 杨洪兵. 外源多元醇对盐胁迫下荞麦种子萌发及幼苗生理特性的影响[J]. 华北农学报, 2013, 28(4):98-104. [68] 赵京刚, 张苍梅. 山梨醇浸种对盐胁迫下无花果发芽及幼苗生长的影响[J]. 中国果菜, 2016, 36(7):19-22. [69] Bindu RC, Vivekanandan M.Hormonal activities of 5-aminolevu-linic acid in callus induction and micropropagation[J]. Plant Growth Regulation, 1998, 26(1):15-18. [70] Eiji N, Kensuke K, Mohammad Masud P, et al.Role of 5-aminole-vulinic acid(ALA)on active oxygen-scavenging system in NaCl- treated spinach(Spinaciaoleracea)[J]. Journal of Plant Physi-ology, 2003, 160(9):1085-1091. [71] 吕婷婷, 肖云华, 吴群, 等. 外源5-氨基乙酰丙酸对盐胁迫下菘蓝种子萌发及幼苗抗氧化酶活性的影响[J]. 西北植物学报, 2013, 33(10):2037-2042. [72] 宿梅飞, 魏小红, 辛夏青, 等. 外源cGMP调控盐胁迫下黑麦草种子萌发机制[J]. 生态学报, 2018, 38(17):6171-6179. [73] 戚乐磊, 陈阳, 贾恢先. 盐胁迫下有机及无机硅对水稻种子萌发的影响[J]. 甘肃农业大学学报, 2002(3):272-278. [74] 陈昀, 郑焕明, 张竞, 等. 以hemin为基础的物质联用缓解盐胁迫对大豆种子萌发的抑制[J]. 大豆科学, 2013, 32(5):640-646. [75] 汤菊香, 高扬帆, 陈军. GA和Mn2+对盐渍土棉花种子发芽影响的研究[J]. 种子, 2006(8):7-9. [76] 郑元元, 岳海涛, 石在强, 等. 盐胁迫下解盐促生细菌Rs-5和Rs-198促进棉花种子发芽的机理探讨[J]. 中国农业科学, 2008(5):1326-1332. [77] 莫文萍, 李春, 郑元元, 等. 盐胁迫下解盐促生菌对棉花种子发芽过程的影响[J]. 农业工程学报, 2006(8):260-263. [78] 马晓敏, 张红娟, 顾沐宇, 等. 促生菌的分离鉴定及其对柳枝稷种子在盐胁迫下的萌发促进作用[J]. 家畜生态学报, 2015, 36(6):46-52. [79] Siddikee MA, Sundaram S, Chandrasekaran M, et al.Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(2):237-241. [80] 张晶晶, 安沙舟, 施宠, 等. 内生真菌侵染对盐胁迫下德兰臭草种子萌发及幼苗生理特性的影响[J]. 中国草地学报, 2017, 39(2):59-64. [81] 张萍萍, 胡龙兴, 傅金民. 内生真菌侵染对盐胁迫下黑麦草种子萌发的影响[J]. 草业科学, 2012, 29(7):1094-1099. [82] 王瑞峰, 王铁梅, 金晓明, 等. 11个审定苜蓿品种种子萌发期耐盐性评价[J]. 草业科学, 2012, 29(2):213-218. [83] 史燕山, 骆建霞, 黄家珍, 等. 盐胁迫对7种草本地被植物种子萌发的影响[J]. 天津农学院学报, 2007(4):1-4. [84] 张庆昕, 张玉霞, 刘庆鹏, 等. 33个油用向日葵品种种子萌发期抗盐碱性的综合评价[J]. 种子, 2015, 34(11):23-25, 30. [85] Zhang S, Yang R, Huo F, et al.Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germin-ation and seedling establishment associated with modi-fication of the abscisic acid, gibberellin, and ethylene signalling pathways[J]. BMC Plant Biology, 2018, 18(1):218. [86] Xu H, Li K, Yang F, et al.Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses[J]. Mol Biol Rep, 2010, 37(7):3157-3163. |
[1] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[2] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[3] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[4] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[5] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[6] | SI Cheng, ZHONG Qi-wen, YANG Shi-peng. Assembly of Pepino Genome Based on PacBio's Third-generation Sequencing Technology [J]. Biotechnology Bulletin, 2022, 38(9): 180-190. |
[7] | TIAN Qing-yin, YUE Yuan-zheng, SHEN Hui-min, PAN Duo, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Regulation of Carotenoid Metabolism in Plant Ornamental Organs [J]. Biotechnology Bulletin, 2022, 38(12): 35-46. |
[8] | ZHANG Ya-han, ZHU Li-xia, HU Jing, ZHU Ya-jing, ZHANG Xue-jing, CAO Ye-zhong. Opportunities and Challenges of Glyphosate in the Application of Biotechnology Breeding in China [J]. Biotechnology Bulletin, 2022, 38(11): 1-9. |
[9] | QIAN Hong-ping, CHEN Bo, LIN Jin-xing, CUI Ya-ning. Recent Advances on Dynamic Regulation and Imaging Techniques of RNA Polymerase II [J]. Biotechnology Bulletin, 2021, 37(4): 293-302. |
[10] | FU Zhi-qiang, XIONG Yan. Research Progress on Portable Bio-optical Sensors [J]. Biotechnology Bulletin, 2021, 37(3): 219-226. |
[11] | LIU Jia, WEI Jia-qi, LIU Yu-qin, SHI Ge-ge, GUO Jing. Research on Evolution of Gene Editing Technology Based on Patent Analysis and Social Network Analysis [J]. Biotechnology Bulletin, 2021, 37(12): 274-284. |
[12] | SUN Jia-dong, SUN Xiao-feng, LI Lan, SHEN Wei, CHENG Shun-feng. Application Prospects of Stem Cell Technology in the Protection of Indigenous Porcine Germplasm Resources [J]. Biotechnology Bulletin, 2020, 36(8): 228-234. |
[13] | GAO Wei-fang, ZHANG Li-ping, ZHU Peng. Recent Progress on Isothermal Amplification Technology and Its Combination with CRISPR in Rapid Detection of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(5): 22-31. |
[14] | GAO Xing-ai, WANG Xin, XIE Jiao, WANG Fei-hu, GONG Yu-xuan, GUAN Fa-chun, LI Zhong-he. Research Progress on Low Temperature Straw-degrading Compound Microbial Agent [J]. Biotechnology Bulletin, 2020, 36(4): 144-150. |
[15] | XU Qian, SUN Wei, ZHANG Xue-fu. Analysis on Cooperation Situation of Patentees of Genetically Modified Technology in Maize [J]. Biotechnology Bulletin, 2020, 36(4): 225-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||