[1] Makarova KS, Wolf YI, Alkhnbashi OS, et al.An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11):722-736. [2] Hsu PD, Lander ES, Zhang F.Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [3] Deltcheva E, Chylinski K, Sharma CM, et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340):602-607. [4] Shmakov S, Smargon A, Scott D, et al.Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3):169-182. [5] Roth TL, Puig-Saus C, Yu R, et al.Reprogramming human T cell function and specificity with non-viral genome targeting[J]. Nature, 2018, 559(7714):405-409. [6] Haapaniemi E, Botla S, Persson J, et al.CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat Med, 2018, 24(7):927-930. [7] Wang M, Sintim HO.Discriminating cyclic from linear nucleotides - CRISPR/Cas-related cyclic hexaadenosine monophosphate as a case study[J]. Anal Biochem, 2019, 567:21-26. [8] Adli M.The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1):1911. [9] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [10] Gasiunas G, Barrangou R, Horvath P, et al.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39):E2579-E2686. [11] Gilbert LA, Larson MH, Morsut L, et al.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451. [12] Zhang Y, Qian L, Wei W, et al.Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. Acs Synth Biol, 2017, 6(2):211-216. [13] Qiu XY, Zhu LY, Zhu CS, et al.Highly effective and low-cost microRNA detection with CRISPR-Cas9[J]. Acs Synth Biol, 2018, 7(3):807-813. [14] Zetsche B, Gootenberg JS, Abudayyeh OO, et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system[J]. Cell, 2015, 163(3):759-771. [15] Chylinski K, Le Rhun A, Charpentier E.The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems[J]. Rna Biol, 2013, 10(5):726-737. [16] Chen JS, Ma E, Harrington LB, et al.CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387):436-439. [17] Shea MJ, King DL, Conboy MJ, et al.Proteins that bind to drosophila chorion cis-regulatory elements:a new C2H2 zinc finger protein and a C2C2 steroid receptor-like component[J]. Genes Dev, 1990, 4(7):1128-1140. [18] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573. [19] Zhou W, Hu L, Ying L, et al.A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J]. Nat Commun, 2018, 9(1):5012. [20] Huang M, Zhou X, Wang H, et al.CRISPR/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Anal Chem, 2018, 90(3):2193-2200. [21] Li SY, Cheng QX, Wang JM, et al.CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4:20. [22] Li L, Li S, Wu N, et al.HOLMESv2:A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. Acs Synth Biol, 2019, 8(10):2228-2237. [23] Wang B, Wang R, Wang D, et al.Cas12aVDet:A CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection[J]. Anal Chem, 2019, 91(19):12156-12161. [24] Hajian R, Balderston S, Tran T, et al.Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat Biomed Eng, 2019, 3(6):427-437. [25] Shao N, Han X, Song Y, et al.CRISPR-Cas12a coupled with platinum nanoreporter for visual quantification of SNVs on a volumetric bar-chart chip[J]. Anal Chem, 2019, 91(19):12384-12391. [26] Teng F, Guo L, Cui T, et al.CDetection:CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J]. Genome Biol, 2019, 20(1):132. [27] Harrington LB, Burstein D, Chen JS, et al.Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842. [28] Pardee K, Green AA, Takahashi MK, et al.Rapid, low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5):1255-1266. [29] Gootenberg JS, Abudayyeh OO, Lee JW, et al.Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442. [30] Gootenberg JS, Abudayyeh OO, Kellner MJ, et al.Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387):439-444. [31] Myhrvold C, Freije CA, Gootenberg JS, et al.Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448. [32] Qing GC, Gong NQ, Chen XH, et al.Natural and engineered bacterial outer membrane vesicles[J]. Biophysics Reports, 2019, 5(4):184-198. [33] Qiu JH, Xu JX, Zhang K, et al.Refining cancer management using integrated liquid biopsy[J]. Theranostics, 2020, 10(5):2374-2384. [34] Li Y, Teng X, Zhang K, et al.RNA strand displacement responsive CRISPR/Cas9 system for mRNA sensing[J]. Anal Chem, 2019, 91(6):3989-3996. [35] Liang M, Li Z, Wang W, et al.A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules[J]. Nat Commun, 2019, 10(1):3672. |