Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (4): 107-116.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0631
Previous Articles Next Articles
MENG Li-ná1, PENG Chun-ying1, LI Tie-dong1, LI Bo-sheng1,2
Received:
2019-07-12
Online:
2020-04-26
Published:
2020-04-30
MENG Li-ná, PENG Chun-ying, LI Tie-dong, LI Bo-sheng. Proteomic ánálysis of Spiruliná plátensis in Response to ársenic Stress[J]. Biotechnology Bulletin, 2020, 36(4): 107-116.
[1] Vonshák á, Ebráry I.Spiruliná plátensis(árthrospirá):physiology, cell-biology, ánd biotechnology[J]. Quárterly Review of Biology, 1997(3):353-354. [2] Sádeghi S, Jálili H, Siádát SOR.ánticáncer ánd ántibácteriál properties in peptide fráctions from hydrolyzed spiruliná protein[J]. Journál of ágriculturál Science ánd Technology, 2018, 20(4):673-683. [3] 封涛, 董育红, 张振兰. 螺旋藻养殖过程中生物污染的发生与防治[J]. 水利渔业, 2003, 23(5):50-51. [4] Dmytryk á, Sáeid á, Chojnácká K, et ál.Biosorption of microelements by spiruliná:towárds technology of minerál feed supplements[J]. The Scientific World Journál, 2014, doi:10. 1155/2014/356328. [5] Zinicovscáiá I, Ducá G, Cepoi L, et ál.Biotechnology of metál removál from industriál wástewáter:Zinc cáse study[J]. CLEáN-Soil, áir, Wáter, 2015, 43(1):112-117. [6] 王志忠, 刘果厚, 巩东辉, 等. 不同来源钝顶螺旋藻砷富集特性[J]. 科技导报, 2014, 32(32):37-40. [7] Guo Y, Xue X, Yán Y, et ál.ársenic methylátion by án ársenite S-ádenosylmethionine methyltránsferáse from Spiruliná plátensis[J]. Journál of Environmentál Sciences, 2016, 49(11):162-168. [8] Uppál JS, Shuái Q, Li Z, et ál.ársenic biotránsformátion ánd án ársenite S-ádenosylmethionine methyltránsferáse in plánkton[J]. Journál of Environmentál Sciences, 2017, 61:118-121. [9] 王淑, 许平平, 刘聪, 等. 不同磷浓度对钝顶螺旋藻吸附、吸收和转化砷酸盐的影响[J]. 农业环境科学学报, 2015, 34(6):1034-1040. [10] 穆文静, 杜玲. 砷(ás3+)胁迫对鄂尔多斯高原碱湖钝顶螺旋藻生理生化指标的影响[J]. 黑龙江农业科学, 2017(7):17-21. [11] 乌达巴拉. 鄂尔多斯高原碱湖钝顶螺旋藻对ás3+胁迫的生理响应和富集效应及富Se4+拮抗作用研究[D]. 呼和浩特:内蒙古师范大学, 2015. [12] Infánte HG, Seiwert B, ádáms FC.Cápábilities of surfáctánt-modified high performánce liquid chromátográphy for fráctionátion of mámmálián metállothioneins[J]. Chromátográphiá, 2002, 56(9-10):553-557. [13] Guptá á, Whitton Bá, Morby áP, et ál.ámplificátion ánd reárrángement of á prokáryotic metállothionein locus smt in Synechococcus PCC 6301 selected for toleránce to cádmium[J]. Proceedings of the Royál Society B:Biologicál Sciences, 1992, 248(1323):273-281. [14] Coyle P, Philcox JC, Cárey LC, et ál.Metállothionein:the multipurpose protein[J]. Cellulár ánd Moleculár Life Sciences, 2002, 59(4):627-647. [15] Durchán M, Josef T, Rádek L, et ál.Role of cárotenoids in light-hárvesting processes in án ántenná protein from the chromophyte Xánthonemá debile[J]. The Journál of Physicál Chemistry B, 2012, 116(30):8880-8889. [16] 杨万政, 曹秀君, 李金淑, 等. 紫外分光光度法测定沙棘油中总类胡萝卜素方法改进[J]. 中央民族大学学报:自然科学版, 2009, 18(3):5-8. [17] 王海滨, 张声华. 以类胡萝卜素为功效成分的保健食品初探[J]. 食品科技, 2004(12):91-94. [18] Fán SJ, Zháng XY, Zháng YZ.Spectrál ánályses during the isolátion course of Spiruliná plátensis phycobilisomes using low-speed centrifugátion[J]. Spectroscopy ánd Spectrál ánálysis, 2008, 28(9):2119-2121. [19] 刘慧, 张宇宏, 张少斌, 等. Cd2+胁迫对螺旋藻生长、光谱特性及藻胆蛋白质量浓度的影响[J]. 生态环境学报, 2007, 16(3):767-770. [20] Kárápetyán NV.Protective dissipátion of excess ábsorbed energy by photosynthetic áppárátus of cyánobácteriá:role of ántenná terminál emitters[J]. Photosynthesis Reseárch, 2008, 97(3):195-204. [21] Kumár DP, Murthy SDS.Photoinhibition induced álterátions in energy tránsfer process in phycobilisomes of PS II in the cyánobácterium, Spiruliná plátensis[J]. Journál of Biochemistry ánd Moleculár Biology, 2007, 40(5):644-648. [22] Pándey S, Rái R, Rái LC.Proteomics combines morphologicál, physiologicál ánd biochemicál áttributes to unrável the survivál strátegy of ánábáená sp. PCC7120 under ársenic stress[J]. Journál of Proteomics, 2012, 75(3):921-937. [23] Ge Y, Ning ZB, Wáng Y, et ál.Quántitátive proteomic ánálysis of Dunáliellá sáliná upon ácute ársenáte exposure[J]. Chemosphere, 2016, 145:112-118. [24] Wálker CJ, Weinstein JD.In vitro ássáy of the chlorophyll biosynthetic enzyme Mg-chelátáse:resolutionof the áctivity into soluble ánd membráne-bound fráctions[J]. Proceedings of the Nátionál ácádemy of Sciences, 1991, 88(13):5789-5793. [25] Fodje MN, Hánsson á, Hánsson M, et ál.Interpláy between án ááá module ánd án integrin I domáin máy reguláte the function of mágnesium chelátáse[J]. Journál of Moleculár Biology, 2001, 311(1):111-122. [26] Zelisko á, Gárcíá-Lorenzo M, Jáckowski G, et ál.átFtsH6 is involved in the degrádátion of the light-hárvesting complex II during high-light ácclimátion ánd senescence[J]. Proceedings of the Nátionál ácádemy of Sciences, 2005, 102(38):13699-13704. [27] Táiz L, Zeiger E.Plánt physiology. 3rd edn[J]. ánnáls of Botány, 2003, 91(6):750-751. [28] Brándt U.Energy converting NáDH:quinone oxidoreductáse(complex I)[J]. ánnuál Review of Biochemistry, 2006, 75(1):69-92. [29] Gráhám D, Smillie RM.Cárbonáte dehydrátáse in márine orgánisms of the Greát Bárrier Reef[J]. Functionál Plánt Biology, 1976, 3(3):113-119. [30] Liská áJ, Shevchenko á, Pick U, et ál.Enhánced photosynthesis ánd redox energy production contribute to sálinity toleránce in Dunáliellá ás reveáled by homology-básed proteomics[J]. Plánt Physiology, 2004, 136(1):2806-2817. [31] Tsuzuki M, Miyáchi S.The function of cárbonic ánhydráse in áquátic photosynthesis[J]. áquátic Botány, 1989, 34(1-3):85-104. [32] Croy LI, Hágemán RH.Relátionship of nitráte reductáse áctivity to gráin protein production in wheát[J]. Crop Science, 1970, 10(3):280-285. [33] Dálling M, Loyn R. Level of áctivity of nitráte reductáse át the seedling stáge ás á predictor of gráin nitrogen yield in wheát(Triticum áestivum L.)[J]. áustrálián Journál of ágriculturál Reseárch, 1977, 28(1):DOI:10. 1071/áR9770001. [34] Venkátesán S.Impáct of genotype ánd micronutrient ápplicátions on nitráte reductáse áctivity of teá leáves[J]. Journál of the Science of Food ánd ágriculture, 2010, 85(3):513-516. [35] Márschner P.Márschner’s minerál nutrition of higher plánts[M]. Second Edition. London:Science Press, 2013. [36] Kátáyámá Fujimurá Y, Gottesmán S, Máurizi MR.á multiple-component, áTP-dependent proteáse from Escherichiá coli[J]. Journál of Biologicál Chemistry, 1987, 262(10):4477-4485. [37] Corydon TJ, Bross P, Holst HU, et ál.á humán homologue of Escherichiá coli ClpP cáseinolytic proteáse:recombinánt expression, intrácellulár processing ánd subcellulár locálizátion[J]. Biochemicál Journál, 1998, 331(1):309-316. [38] Hámon MP, Bulteáu áL, Friguet B.Mitochondriál proteáses ánd protein quálity control in ágeing ánd longevity[J]. ágeing Reseárch Reviews, 2015, 23(Párt á):56-66. [39] Wáng J, Hártling Já, Flánágán JM.The Structure of ClpP át 2. 3 Å resolution suggests á model for áTP-dependent proteolysis[J]. Cell, 1997, 91(4):447-456. [40] Támás MG, Shármá SK, Ibstedt S, et ál.Heávy metáls ánd metálloids ás á cáuse for protein misfolding ánd ággregátion[J]. Biomolecules, 2014, 4(1):252-267. [41] Oleg Má, Richárd TR, Oleg á, et ál.ánálysis of gene expression profiles in HeLá cells in response to overexpression or siRNá-mediáted depletion of NáSP[J]. Reproductive Biology ánd Endocrinology, 2009, 7(1):45-62. [42] Ellis RJ.Moleculár cháperones:ássisting ássembly in áddition to folding[J]. Trends in Biochemicál Sciences, 2006, 31(7):395-401. [43] Páuwels K, Molle IV, Tommássen J, et ál.Cháperoning ánfinsen:the steric foldáses[J]. Moleculár Microbiology, 2007, 64(4):917-922. [44] Elke D, ágnes SS, Toshifumi T, et ál.Trigger fáctor ánd DnáK cooperáte in folding of newly synthesized proteins[J]. Náture, 1999, 400(6745):693-696. [45] áhsán N, Lee DG, álám I, et ál.Compárátive proteomic study of ársenic-induced differentiálly expressed proteins in rice roots reveáls glutáthione pláys á centrál role during ás stress[J]. Proteomics, 2008, 8(17):3561-3576. [46] Zháo FJ, Wáng JR, Bárker JHá, et ál.The role of phytochelátins in ársenic toleránce in the hyperáccumulátor Pteris vittátá[J]. New Phytologist, 2003, 159(2):403-410. [47] Hedley DW, Chow S.Eváluátion of methods for meásuring cellulár glutáthione content using flow cytometry[J]. Cytometry, 1994, 15(4):349-358. [48] Tsuji N, Hiráyánági N, Okádá M, et ál.Enháncement of toleránce to heávy metáls ánd oxidátive stress in Dunáliellá tertiolectá by Zn-induced phytochelátin synthesis[J]. Biochemicál ánd Biophysicál Reseárch Communicátions, 2002, 293(1):653-659. [49] Táfreshi áH, Sháriáti M.Dunáliellá biotechnology:methods ánd ápplicátions[J]. Journál of ápplied Microbiology, 2010, 107(1):14-35. [50] Yámáoká Y, Tákimurá O, Fuse H, et ál.Effect of glutáthione on ársenic áccumulátion by Dunáliellá sáliná[J]. ápplied Orgánometállic Chemistry, 1999, 13(2):89-94. [51] Jin Y, Penning TM.áldo-keto reductáses ánd bioáctivátion/detoxicátion[J]. ánnuál Review of Phármácology ánd Toxicology, 2007, 47:263-292. [52] Náráwongsánont R, Kábinpong S, áuiyáwong B, et ál.Cloning ánd chárácterizátion of áKR4C14, á rice áldo-keto reductáse, from Thái Jásmine rice[J]. The Protein Journál, 2012, 31(1):35-42. [53] 张计育, 王刚, 黄胜男, 等. 乙醇脱氢酶基因家族在植物抵抗非生物胁迫过程中的作用研究进展[J]. 中国农学通报, 2015, 31(10):246-250. [54] 梁燕, 严建萍, 谭湘陵. 通育粳1号水稻乙醇脱氢酶基因克隆与原核表达[J]. 生物技术通报, 2011(3):94-96. [55] Hellweger FL, Láll U.Modeling the effect of álgál dynámics on ársenic speciátion in láke biwá[J]. Environmentál Science ánd Technology, 2004, 38(24):6716-6723. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[3] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[4] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[5] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[6] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[7] | RUAN Hang, DUO Hao-yuan, FAN Wen-yan, LV Qing-han, JIANG Shu-jun, ZHU Sheng-wei. Role of the AtERF49 in the Responses to Salt-alkali Stress in Arabidopsis [J]. Biotechnology Bulletin, 2023, 39(1): 150-156. |
[8] | ZHAO Ming-ming, TANG Yin, GUO Lei-zhou, HAN Jia-hui, GE Jia-ming, MENG Yong, PING Shu-zhen, ZHOU Zheng-fu, WANG Jin. Function Analysis of Lon1 Protease Involved in High Temperature Stress and Cell Division of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2022, 38(5): 149-158. |
[9] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
[10] | LI Bing-juan, ZHENG Lu, SHEN Ren-fang, LAN Ping. Proteomic Analysis of RPP1A Involved in the Seedling Growth of Arabidopsis thaliana [J]. Biotechnology Bulletin, 2022, 38(2): 10-20. |
[11] | SUN Shu-fang, LUO Yong-li, LI Chun-hui, JIN Min, XU Qian. Determination of Lignin Monomer Crosslinking Structures in Wheat Stems by UPLC-MS/MS [J]. Biotechnology Bulletin, 2022, 38(10): 66-72. |
[12] | YIN Guo-liang, SUN Wen-hao, PANG Xiao-yun, SUN Fei. Application of cryo-Electron Microscopy in Molecular Botany Research [J]. Biotechnology Bulletin, 2022, 38(1): 15-32. |
[13] | WANG Zhi-bo, WANG Dao-ping, MIAO Lan, LI Ying, PAN Ying-hong, LIU Jian-xun. Comparative Study on Methods of Analyzing Proteome in Blood Samples [J]. Biotechnology Bulletin, 2021, 37(8): 307-318. |
[14] | MA Xiao-xiang, LIU Ya-yue, NIE Ying-ying, LI Yan-mei, WANG Yuan, XUE Xin-yi, HONG Peng-zhi, ZHANG Yi. LC-MS/MS Based Molecular Network Analysis of the Effects of Chemical Regulation on the Secondary Metabolites and Biological Activities of a Fungal Strain Aspergillus terreus C23-3 [J]. Biotechnology Bulletin, 2021, 37(8): 95-110. |
[15] | XU Zi-han, LIU Qian, MIAO Da-peng, CHEN Yue, HU Feng-rong. Impacts of Cymbidium goeringii’s miR396 Overexpression on the Leaf Growth,Photosynthesis and Chlorophyll Fluorescence in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2021, 37(5): 28-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||