[1] Zhou M, Wang H, Zeng X, et al.Mortality, morbidity, and risk factors in China and its provinces, 1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet, 2019, 394(10204):1145-1158. [2] Chaudhary K, Poirion OB, Lu L, et al.Deep learning-based multi-omics integration robustly predicts survival in liver cancer[J]. Clinical Cancer Research, 2018, 24(6):1248-1259. [3] Zhu RX, Seto WK, Lai CL, et al.Epidemiology of hepatocellular carcinoma in the Asia-Pacific region[J]. Gut and Liver, 2016, 10(3):332-339. [4] Fan G, Tu Y, Chen C, et al.DNA methylation biomarkers for hepatocellular carcinoma[J]. Cancer Cell International, 2018, 18(1):140. [5] Montironi C, Montal R, Llovet JM.New drugs effective in the systemic treatment of hepatocellular carcinoma[J]. Clinical Liver Disease, 2019, 14(2):56-61. [6] Bruix J, Gores GJ, Mazzaferro V.Hepatocellular carcinoma:clinical frontiers and perspectives[J]. Gut, 2014;63(5):844-855. [7] Wang X, Gao J, Zhou B, et al.Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles[J]. Life Sciences, 2019, 232:116596. [8] Wang Y, Ruan Z, Yu S, et al.A four-methylated mRNA signature-based risk score system predicts survival in patients with hepatocellular carcinoma[J]. Aging, 2019, 11(1):160-173. [9] Long J, Zhang L, Wan X, et al.A four-gene-based prognostic model predicts overall survival in patients with hepatocellular carcinoma[J]. J Cell Mol Med, 2018, 22(12):5928-5938. [10] Zheng Y, Liu Y, Zhao S, et al.Large-scale analysis reveals a novel risk score to predict overall survival in hepatocellular carcinoma[J]. Cancer Manage Res, 2018, 10:6079-6096. [11] Liu GM, Zeng HD, Zhang CY, et al.Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma[J]. Cancer Cell International, 2019, 19(1):138. [12] Wang Z, Teng D, Li Y, et al.A six-gene-based prognostic signature for hepatocellular carcinoma overall survival prediction[J]. Life Sciences, 2018, 203(24):83-91. [13] Liu G, Dong C, Liu L.Integrated multiple “-omics” data reveal subtypes of hepatocellular carcinoma[J]. PLoS One, 2016, 11(11):e0165457. [14] Fa B, Luo C, Tang Z, et al.Pathway-based biomarker identification with crosstalk analysis for robust prognosis prediction in hepatocellular carcinoma[J]. EBioMedicine, 2019, 44:250-260. [15] Wei L, Jin Z, Yang S, et al.TCGA-assembler 2:software pipeline for retrieval and processing of TCGA/CPTAC data[J]. Bioinformatics, 2018, 34(9):1615-1617. [16] Fujimoto A, Furuta M, et al.Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer[J]. Nature Genetics, 2016, 48(5):500-509. [17] Roessler S, Jia HL, Budhu A, et al.A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients[J]. Cancer Research, 2010, 70(24):10202-10212. [18] Villa E, Critelli R, et al.Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study[J]. Gut, 2016, 65(5):861-869. [19] Therneau TM.A package for survival analysis in S. version 2. 38[J]. 2015. [20] Schröder MS, Culhane AC, et al.survcomp:An R/Bioconductor package for performance assessment and comparison of survival models[J]. Bioinformatics, 2011, 27(22):3206-3208. [21] Harrell FE, Lee KL, Mark DB.Multivariable prognostic models:issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors[J]. Statistics in Medicine, 1996, 15(4):361-387. [22] Love MI, Huber W, Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550. [23] Ritchie ME, Phipson B, Wu D, et al.limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015, 43(7):e47. [24] Benjamini Y, Hochberg Y.Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. JRS Soc:Series B Methodol, 1995, 57(1):289-300. [25] Yu G, Wang LG, Han Y, et al.ClusterProfiler:an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287. [26] Szklarczyk D, Gable AL, Lyon D, et al.STRING v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1):D607-D613. [27] Su G, Morris JH, Demchak B, et al. Biological network exploration with Cytoscape 3[J]. Curr Protoc Bioinformatics, 2014;47:8. 13. 1-8. 24. [28] Scardoni G, Tosadori G, Faizan M, et al.Biological network analysis with CentiScaPe:Centralities and experimental dataset integration[J]. F1000Research, 2015, 3:139. [29] Bader GD, Hogue CWV.An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1):2. [30] Bindea G, Mlecnik B, et al.ClueGO:a Cytoscape plug-in to deci-pher functionally grouped gene ontology and pathway annotation networks[J]. Bioinformatics, 2009, 25(8):1091-1093. [31] Bindea G, Galon J, Mlecnik B.CluePedia Cytoscape plugin:pathway insights using integrated experimental and in silico data[J]. Bioinformatics, 2013, 29(5):661-663. [32] Bisteau X, Caldez M, Kaldis P.The Complex relationship between liver cancer and the cell cycle:a story of multiple regulations[J]. Cancers, 2014, 6(1):79-111. [33] 陈珂, 丁艳平, 王建林, 等. p53参与代谢调控的研究进展[J]. 生物技术通报, 2016, 32(11):52-58. [34] Zhuang L, Yang Z, Meng Z.Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients[J]. Biomed Res Int, 2018:7897346. [35] Li N, Li L, Chen Y.The Identification of core gene expression signature in hepatocellular carcinoma[J]. Oxidative Medicine and Cellular Longevity, 2018:3478305. [36] Yang WX, Pan YY, You CG.CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 may be potential therapeutic targets for hepatocellular carcinoma using integrated bioinformatic analysis[J]. Biomed Res Int, 2019:1245072. [37] Liu ZK, Zhang RY, Yong YL, et al.Identification of crucial genes based on expression profiles of hepatocellular carcinomas by bioinformatics analysis[J]. Peer J, 2019, 7(8):e7436. [38] Liu Z, Li J, Chen J, et al.MCM family in HCC:MCM6 indicates adverse tumor features and poor outcomes and promotes S/G2 cell cycle progression[J]. BMC Cancer, 2018, 18(1):200. [39] Liu J, Li W, Zhang J, et al.Identification of key genes and long non-coding RNA associated ceRNA networks in hepatocellular carcinoma[J]. Peer J, 2019:e8021. |