Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 262-271.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0551
Previous Articles Next Articles
PENG Wen-chao(), LIU Jian-xin, WANG Di-ming()
Received:
2020-05-09
Online:
2021-01-26
Published:
2021-01-15
Contact:
WANG Di-ming
E-mail:happypwc@foxmail.com;wdm@zju.edu.cn
PENG Wen-chao, LIU Jian-xin, WANG Di-ming. Research Progress on Metabolic Causes for Hypoxic Stress in Mammalian Animals[J]. Biotechnology Bulletin, 2021, 37(1): 262-271.
[1] | Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates[J]. Journal of Experimental Biology, 2010,213(Pt 24):4125-4136. |
[2] | Padhy G, Gangwar A, Sharma M, et al. Plasma kallikrein-bradykinin pathway promotes circulatory nitric oxide metabolite availability during hypoxia[J]. Nitric Oxide, 2016,55-56:36-44. |
[3] |
Parr N, Bishop CM, Batbayar N, et al. Tackling the Tibetan Plateau in a down suit:insights into thermoregulation by bar-headed geese during migration[J]. Journal of Experimental Biology, 2019,222(Pt 19):jeb203695.
doi: 10.1242/jeb.203695 URL |
[4] |
Schodel J, Ratcliffe PJ. Mechanisms of hypoxia signalling:new implications for nephrology[J]. Nature Reviews Nephrology, 2019,15(10):641-659.
doi: 10.1038/s41581-019-0182-z URL |
[5] | AlMarabeh S, Abdulla MH, O’Halloran KD. Is Aberrant reno-renal reflex control of blood pressure a contributor to chronic intermittent hypoxia-induced hypertension[J] Frontiers in Physiology, 2019,10:465. |
[6] | Curtelin D, Morales AD, Torres PR, et al. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans[J]. Journal of Cerebral Blood Flow and Metabolism, 2018,38(1):136-150. |
[7] | Mypinder SS, Donald EG, Philip NA, et al. Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest[J]. Resuscitation, 2019,141(36):96-103. |
[8] | 潘建, 肖海峰, 刘福玉, 等. 低氧预适应训练在陆航飞行员高原驻训中的应用研究[J]. 西南国防医药, 2013,23(3):307-309. |
Pan J, Xiao HF, Liu FY, et al. Research on application of hypoxic preconditioning training to army aviation pilots’field training at high altitude[J]. Xinan Guofang Yiyao, 2013,23(3):307-309. | |
[9] | Qiao GH, Qiao CQ, Li JH, et al. Effect of high altitude on nutrient digestibility, rumen fermentation and basal metabolism rate in Chinese Holstein cows on the Tibetan plateau[J]. Animal Production Science, 2013,53:240-246. |
[10] |
Kong ZW, Zhou CS, Jiao JZ, et al. Integrative plasma proteomic and microRNA analysis of Jersey cattle in response to high-altitude hypoxia[J]. Journal of Dairy Science, 2019,102:4606-4618.
URL pmid: 30879823 |
[11] | Neves J, Haider T, Gassmann M, et al. Iron homeostasis in the lungs-a balance between health and disease[J]. Pharmaceuticals(Basel), 2019,12(1):5. |
[12] | Cloonan SM, Choi AM. Mitochondria in lung disease[J]. Journal of Clinical Investigation, 2016,126(3):809-820. |
[13] |
Zhu HH, Wang XT, Sun YH, et al. Pim1 overexpression prevents apoptosis in cardiomyocytes after exposure to hypoxia and oxidative stress via upregulating cell autophagy[J]. Cellular Physiology and Biochemistry, 2018,49(6):2138-2150.
doi: 10.1159/000493817 URL pmid: 30257237 |
[14] |
Eirin A, Ebrahimi B, Kwon SH, et al. Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension[J]. Journal of the American Heart Association, 2016,5(6):e003118.
doi: 10.1161/JAHA.115.003118 URL pmid: 27247333 |
[15] |
Oka T, Morita H, Komuro I. Novel molecular mechanisms and regeneration therapy for heart failure[J]. Journal of Molecular and Cellular Cardiology, 2016,92:46-51.
doi: 10.1016/j.yjmcc.2016.01.028 URL pmid: 26829118 |
[16] | Kietzmann T. Liver zonation in health and disease:hypoxia and hypoxia-inducible transcription factors as concert masters[J]. International Journal of Molecular Sciences, 2019,20(9):2347. |
[17] | Liu Z, Tu K, Wang Y, et al. Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling[J]. Cellular Physiology and Biochemistry, 2017,44(5):1856-1868. |
[18] | Waseem N, Chen PH. Hypoxic hepatitis:A review and clinical update[J]. Journal of Clinical and Translational Hepatology, 2016,4(3):263-268. |
[19] | Luo F, Zou Z, Liu X, et al. Enhanced glycolysis, regulated by HIF-1alpha via MCT-4, promotes inflammation in arsenite-induced carcinogenesis[J]. Carcinogenesis, 2017,38(6):615-626. |
[20] |
Rausch LK, Netzer NC, Hoegel J, et al. The linkage between breast cancer, hypoxia, and adipose tissue[J]. Frontiers in Oncology, 2017,7:211.
URL pmid: 28993797 |
[21] |
Curran CS, Carrillo ER, Ponik SM, et al. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells[J]. Environmental Toxicology and Pharmacology, 2015,39(1):114-124.
URL pmid: 25481308 |
[22] | Chu CY, Jin YT, Zhang W, et al. CA IX is upregulated in CoCl2-induced hypoxia and associated with cell invasive potential and a poor prognosis of breast cancer[J]. International Journal of Oncology, 2016,48(1):271-280. |
[23] | Shao Y, Wellman TL, Lounsbury KM, et al. Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2014,307(3):237-247. |
[24] |
Mattmiller SA, Corl CM, Gandy JC, et al. Glucose transporter and hypoxia-associated gene expression in the mammary gland of transition dairy cattle[J]. Journal of Dairy Science, 2011,94(6):2912-2922.
doi: 10.3168/jds.2010-3936 URL pmid: 21605761 |
[25] | Cai J, Wang DM, Liang SL, et al. Excessive supply of glucose elicits an NF-κB2-dependent glycolysis in lactating goat mammary glands[J]. FASEB Journal, 2020,34:8671-8685. |
[26] | Ding D, Hou L, Gui WY, et al. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts[J]. Nature Communications, 2018(9):4991. |
[27] |
Shao Y, Zhao FQ. Emerging evidence of the physiological role of hypoxia in mammary development and lactation[J]. J Anim Sci Biotechnol, 2014,5(1):9.
doi: 10.1186/2049-1891-5-9 URL pmid: 24444333 |
[28] | Paatero I, Seagroves TN, Vaparanta K, et al. Hypoxia-inducible factor-1alpha induces ErbB4 signaling in the differentiating mammary gland[J]. Journal of Biological Chemistry, 2014,289(32):22459-22469. |
[29] | Anupriya T, Alexey VM, Jin X, et al. Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome[J]. Msystems, 2018,3(3):1-9. |
[30] |
Vaccari M, Gordon SN, Fourati S, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition[J]. Nature Medicine, 2016,22(7):762-770.
doi: 10.1038/nm.4105 URL pmid: 27239761 |
[31] |
Simmen S, Cosin RJ, Melhem H, et al. Iron prevents hypoxia-associated inflammation through the regulation of nuclear factor-kappaB in the intestinal epithelium[J]. Cellular and Molecular Gastroenterology and Hepatology, 2019,7(2):339-355.
doi: 10.1016/j.jcmgh.2018.10.006 URL pmid: 30704983 |
[32] | Lin WB, Liang MY, Chen GX, et al. MicroRNA profiling of the intestine during hypothermic circulatory arrest in swine[J]. World Journal of Gastroenterology, 2015,21(7):2183-2190. |
[33] |
Mahon PC, Hirota K, Semenza GL. FIH-1:a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity[J]. Genes & Development, 2001,15(20):2675-2686.
doi: 10.1101/gad.924501 URL pmid: 11641274 |
[34] |
Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise[J]. Experimental Physiology, 2016,101(1):28-32.
doi: 10.1113/EP085318 URL pmid: 26391197 |
[35] |
Ameln H, Gustafsson T, Sundberg CG, et al. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle[J]. The FASEB Journal, 2005,19(8):1009-1011.
doi: 10.1096/fj.04-2304fje URL pmid: 15811877 |
[36] |
Thomas A, Belaidi E, Moulin S, et al. Chronic intermittent hypoxia impairs insulin sensitivity but improves whole-body glucose tolerance by activating skeletal muscle AMPK[J]. Diabetes, 2017,66(12):2942-2951.
doi: 10.2337/db17-0186 URL pmid: 28882901 |
[37] |
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. International Journal of Cancer, 2016,138(5):1058-1066.
doi: 10.1002/ijc.29519 URL pmid: 25784597 |
[38] | Teague C, Youngblood JP, Ragan K, et al. A positive genetic correlation between hypoxia tolerance and heat tolerance supports a controversial theory of heat stress[J]. Biology Letter, 2017,13(11):20170309. |
[39] | Lu R, Peng J, Xiao L, et al. Heme oxygenase-1 pathway is involved in delayed protection induced by heat stress against cardiac ischemia-reperfusion injury[J]. International Journal of Cardiology, 2002(82):133-140. |
[40] | Jin XL, Wang K, Liu HY, et al. Protection of bovine mammary epithelial cells from hydrogen peroxide-induced oxidative cell damage by resveratrol[J]. Oxidative Medicine and Cellular Longevity, 2016: 2572175. |
[41] |
Tao S, Dahl GE, Invited review:heat stress effects during late gestation on dry cows and their calves[J]. Journal of Dairy Science, 2013,96(7):4079-4093.
doi: 10.3168/jds.2012-6278 URL pmid: 23664343 |
[42] |
Farsijani NM, Liu Q, Kobayashi H, et al. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin[J]. Journal of Clinical Investigation, 2016,126(4):1425-1437.
doi: 10.1172/JCI74997 URL |
[43] | Shannon RP. Microvascular research:biology and pathology[J]. Congestive Heart Failure, 2006,113(19):235-235. |
[44] | Strumia MM, Colwell LS, Strumia PV, et al. Red cell preservation[J]. Cryobiology, 1974,11(6):536. |
[45] | 张思源, 柴志欣, 钟金城. 牦牛高原低氧适应研究进展[J]. 江苏农业科学, 2016,44(3):13-17. |
Zhang SY, Chai ZX, Zhong JC. Research progress on yak plateau hypoxic adaptation[J]. Jiangsu Agricultural Sciences, 2016,44(3):13-17. | |
[46] | 雷蕾, 包鹏甲, 吴晓云, 等. 不同海拔地区牦牛血液生化指标的比较研究[J]. 中国畜牧兽医, 2018,45(11):3160-3166. |
Lei L, Bao PJ, Wu XY, et al. Comparison study of blood biochemical indicators of yak at different altitudes[J]. China Animal Husbandry&Veterinary Medicine, 2018,45(11):3160-3166. | |
[47] | 巴桑旺堆, 郭仪, 朱彦宾, 等. 牦牛高原低氧适应性生理及分子机制[J]. 世界生态学, 2018,7(2):76-79. |
Basang WD, Guo Y, Zhu YB, et al. Physiology and molecular mechanism of plateau adaptability in yak[J]. International Journal of Ecology, 2018,7(2):76-79. | |
[48] | Mizuno S, Ishizaki T, Toga H, et al. Endogenous asymmetric dimethylarginine pathway in high altitude adapted yaks[J]. Biomed Research International, 2015: 196904. |
[49] | Lan D, Xiong X, Ji W, et al. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs[J]. Genetica, 2018,146(2):151-160. |
[50] | Wu XY, Ding XZ, Chu M, et al. Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak(Bos grunniens)[J]. Journal of Integrative Agriculture, 2015,14(4):741-748. |
[51] | Xiong X, Fu M, Lan D, et al. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors[J]. Animal Biotechnology, 2015,26(3):222-229. |
[52] | 孔小艳, 苟潇, 马腾, 等. 藏猪低氧适应的血液生理指标研究[J]. 云南农业大学学报, 2014,29(2):297-300. |
Kong XY, Gou X, Ma T, et al. Study on blood physiological indicators of adaptation to hypoxia in Tibet pig[J]. Journal of Yunnan Agricultural University, 2014,29(2):297-300. | |
[53] | 强巴央宗, 刘金凤, 商鹏, 等. 高原环境中藏猪血液生理指标测定与比较[J]. 西南农业学报, 2011,24(6):2382-2384. |
Qiangba YZ, Liu JF, Shang P, et al. Determination of blood physiological parameters in Tibet pig at high altitude[J]. Southwest China Journal of Agricultural Sciences, 2011,24(6):2382-2384. | |
[54] | Semenza LG. HIF-1:mediator of physiological and pathophysiological responses to hypoxia[J]. Journal of Applied Physiology, 2000,88:1474-1480. |
[55] | Zhuang ZN, Guo S, Ji ZP, et al. Hypoxia preconditioning induced HIF-1α promotes glucose metabolism and protects mitochondria in liver I/R injury[J]. Clinics and Research in Hepatology and Gastroenterology, 2015,39(5):610-619. |
[56] | Cartee GD, Douen AG, Ramlal T, et al. Stimulation of glucose transport in skeletal muscle by hypoxia[J]. Journal of Applied Physiology, 1991,70(4):1593-1600. |
[57] | Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme:Cellular responses to hypoxia[J]. American Journal of Physiology-Cell Physiology, 2015,309(6):350-360. |
[58] | Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells[J]. Redox Biology, 2017,13:228-234. |
[59] | Braunstein S, Karpisheva K, Pola C, et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer[J]. Molecular Cell, 2007,28(3):501-512. |
[60] | Lopez HC, Barrio RL, Casado MV, et al. Heregulin/ErbB3 signaling enhances CXCR4-driven rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1alpha[J]. Molecular and Cellular Biology, 2016,36(15):2011-2026. |
[61] | Cummins EP, Keogh CE, Crean D, et al. The role of HIF in immunity and inflammation[J]. Molecular Aspects of Medicine, 2016,47-48:24-34. |
[62] | D'Ignazio L, Bandarra D, Rocha S. NF-kappaB and HIF crosstalk in immune responses[J]. The FEBS Journal, 2016,283(3):413-424. |
[63] | Navarro YJ, Burns M, Anandhan A, et al. Oxidative stress, redox signaling, and autophagy:cell death versus survival[J]. Antioxidants and Redox Signaling, 2014,21(1):66-85. |
[64] | Rankin EB, Nam JM, Giaccia AJ. Hypoxia:Signaling the metastatic cascade[J]. Trends in Cancer, 2016,2(6):295-304. |
[65] | Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer[J]. Endocrine-Related Cancer, 2006,13(3):739-749. |
[66] | Daleprane JB, Freitas VS, Pacheco A, et al. Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis[J]. Journal of Nutritional Biochemistry, 2012,23(6):557-566. |
[67] | Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy[J]. EMBO Reports, 2017,18(3):495-509. |
[68] | Roy S, Singh M, Sammi SR, et al. ALA-mediated biphasic downregulation of alpha-7nAchR/HIF-1alpha along with mitochondrial stress modulation strategy in mammary gland chemoprevention[J]. Journal of Cellular Physiology, 2019,234(4):4015-4029. |
[69] | Hou Y, Yang H, Cui Z, et al. Tauroursodeoxycholic acid attenuates endoplasmic reticulum stress and protects the liver from chronic intermittent hypoxia induced injury[J]. Experimental and Therapeutic Medicine, 2017,14(3):2461-2468. |
[70] | Khaire A, Rathod R, Kale A, et al. Vitamin B12 deficiency across three generations adversely influences long-chain polyunsaturated fatty acid status and cardiometabolic markers in rats[J]. Archives of Medical Research, 2016,47(6):427-435. |
[71] | Guney T, Alisik M, Akinci S, et al. Evaluation of oxidant and antioxidant status in patients with vitamin B12 deficiency[J]. Turkish Journal of Medıcal Sciences, 2015,45(6):1280-1284. |
[72] | Daleprane JB, Schmid T, Dehne N, et al. Suppression of hypoxia-inducible factor-1alpha contributes to the antiangiogenic activity of red propolis polyphenols in human endothelial cells[J]. Journal of Nutrition, 2012,142(3):441-447. |
[73] | Illum H, Wang DH, Dowell JE, et al. Phase I dose escalation trial of nitroglycerin in addition to 5-fluorouracil and radiation therapy for neoadjuvant treatment of operable rectal cancer[J]. Surgery, 2015,158(2):460-465. |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[3] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[4] | ZHAO Jia, ZHAO Fei-yan, SHEN Xin, GAO Guang-qi, SUN Zhi-hong. Advances in the Antioxidant Activities of Lactic Acid Bacteria and Their Applications [J]. Biotechnology Bulletin, 2023, 39(11): 182-190. |
[5] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
[6] | LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 165-173. |
[7] | YANG Li, WANG Bo, LI Wen-jiao, WANG Xing-jun, ZHAO Shu-zhen. Research Progress on Production,Scavenging and Signal Transduction of ROS Under Drought Stress [J]. Biotechnology Bulletin, 2021, 37(4): 194-203. |
[8] | LU Shang-de, LIU Jing-jing, FENG Yi-ping, ZHAO Peng, XU Yang-cang. Study on Oxygen Release and Photosynthetic Rate of Immobilized Chlorella [J]. Biotechnology Bulletin, 2021, 37(3): 92-98. |
[9] | LU Lin, YANG Shang-yu, LIU Wei-dong, LU Li-ming. Mining of Genes Related to Reactive Oxygen Species Scavenging in Response to Salt Stress in Nicotiana alata Based on Transcriptome Sequencing [J]. Biotechnology Bulletin, 2020, 36(12): 42-53. |
[10] | LIU Rong, CUI Kai, BAI Fu-heng, DIAO Qi-yu. Research Progress on Methionine Regulating the Oxidative Stress of Livestock and Poultry [J]. Biotechnology Bulletin, 2020, 36(10): 207-214. |
[11] | LIU Na, LIU Zhi-min, SONG Dong-hui. Degradation Characteristics of Catechol and Sodium Benzoate by a Petroleum-degrading Bacterium [J]. Biotechnology Bulletin, 2019, 35(9): 156-164. |
[12] | WEN Yuan, XIA Juan, QI Liang-hua, LIU Xiao-wei, LIU Chen-guang, BAI Feng-wu. Enhanced Furfural Tolerance in Zymomonas mobilis by the Overexpression of Antioxidant Genes [J]. Biotechnology Bulletin, 2019, 35(8): 85-94. |
[13] | WANG Qi, FENG Jing-hong, SUN Zhan-bin, JIANG Wei-zhi, LI Shi-dong, SUN Man-hong, MA Gui-zhen. Effects of Oxidative Stress on Hyphal Growth and Chlamydospore Formation of Clonostachys rosea [J]. Biotechnology Bulletin, 2018, 34(4): 168-173. |
[14] | CHEN Hao-yu, XU Rui-tao, CHENG Zhi-xiang, GAO Qiang, ZHANG Jian. Responses of Asperigillus niger to Oxidative Stress Under H2O2 Exposure [J]. Biotechnology Bulletin, 2018, 34(4): 201-207. |
[15] | YANG Yi-hong, XU Hao, CHEN Duan-fen, GAO Zhi-min. Research Advances on the Gene for Gibberellin 3-Beta-Dioxygenase in Higher Plants [J]. Biotechnology Bulletin, 2018, 34(3): 18-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||