Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 272-281.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0389
Previous Articles Next Articles
LI Xin-shen1(), HUANG Xiao-mei2, WU Shu-xiu3, HUANG Rui-rong1, WEI Lin-gen4, HUA Ju-ling1()
Received:
2020-04-04
Online:
2021-01-26
Published:
2021-01-15
Contact:
HUA Ju-ling
E-mail:lixinshen0@163.com;huajl2000@126.com
LI Xin-shen, HUANG Xiao-mei, WU Shu-xiu, HUANG Rui-rong, WEI Lin-gen, HUA Ju-ling. Rapid Detection of Plant Bacterial Wilt by Loop-mediated Isothermal Amplification[J]. Biotechnology Bulletin, 2021, 37(1): 272-281.
菌株编号 | 菌株名称 | 寄主 | 演化型/生理小种 |
---|---|---|---|
1 | 青枯病菌菌株Ejxnc01 | 茄子 | Ⅰ/1 |
2 | 青枯病菌菌株Cjxnc01 | 辣椒 | Ⅰ/1 |
3 | 青枯病菌菌株Tjxjx01 | 番茄 | Ⅰ/1 |
4 | 青枯病菌菌株Pjxga01 | 花生 | Ⅰ/1 |
5 | 青枯病菌菌株Seppx05 | 芝麻 | Ⅰ/1 |
6 | 青枯病菌菌株JSja03 | 凹头苋 | Ⅰ/1 |
7 | 青枯病菌菌株Tjxga03 | 烟草 | Ⅰ/1 |
8 | 青枯病菌菌株Gjxjj01 | 姜 | Ⅰ/4 |
9 | 青枯病菌菌株Pjxnc01 | 马铃薯 | Ⅱ/3 |
10 | 青枯病菌菌株Pjxga02 | 马铃薯 | Ⅱ/3 |
11 | 青枯病菌菌株Pjxjj03 | 马铃薯 | Ⅱ/3 |
12 | 青枯病菌菌株Pjxda04 | 马铃薯 | Ⅱ/3 |
13 | 蒲桃雷尔氏菌R001 | 丁香树 | - |
14 | 皮氏伯克霍尔德氏菌Bp001 | 土壤 | - |
菌株编号 | 菌株名称 | 寄主 | 演化型/生理小种 |
---|---|---|---|
1 | 青枯病菌菌株Ejxnc01 | 茄子 | Ⅰ/1 |
2 | 青枯病菌菌株Cjxnc01 | 辣椒 | Ⅰ/1 |
3 | 青枯病菌菌株Tjxjx01 | 番茄 | Ⅰ/1 |
4 | 青枯病菌菌株Pjxga01 | 花生 | Ⅰ/1 |
5 | 青枯病菌菌株Seppx05 | 芝麻 | Ⅰ/1 |
6 | 青枯病菌菌株JSja03 | 凹头苋 | Ⅰ/1 |
7 | 青枯病菌菌株Tjxga03 | 烟草 | Ⅰ/1 |
8 | 青枯病菌菌株Gjxjj01 | 姜 | Ⅰ/4 |
9 | 青枯病菌菌株Pjxnc01 | 马铃薯 | Ⅱ/3 |
10 | 青枯病菌菌株Pjxga02 | 马铃薯 | Ⅱ/3 |
11 | 青枯病菌菌株Pjxjj03 | 马铃薯 | Ⅱ/3 |
12 | 青枯病菌菌株Pjxda04 | 马铃薯 | Ⅱ/3 |
13 | 蒲桃雷尔氏菌R001 | 丁香树 | - |
14 | 皮氏伯克霍尔德氏菌Bp001 | 土壤 | - |
引物名称 | 引物序列(5'-3') | 长度/bp |
---|---|---|
F3 | AGCGGTGCCAATCCGTA | 17 |
B3 | TGCCATGGTCAGGTACTGAT | 20 |
FIP | AGCAATCCGAAGGTGCCGAATGTCGCGTA- CAACCAGGA | 38 |
BIP | TCGGTATCCCGACAACACCATGTGGGCGT- CGATCGCATA | 39 |
引物名称 | 引物序列(5'-3') | 长度/bp |
---|---|---|
F3 | AGCGGTGCCAATCCGTA | 17 |
B3 | TGCCATGGTCAGGTACTGAT | 20 |
FIP | AGCAATCCGAAGGTGCCGAATGTCGCGTA- CAACCAGGA | 38 |
BIP | TCGGTATCCCGACAACACCATGTGGGCGT- CGATCGCATA | 39 |
来源植物 | 取样部位 | 样本数量 | LAMP检测 | PCR检测 | ||||
---|---|---|---|---|---|---|---|---|
检出总数 | 检出率 | 检出总数 | 检出率 | |||||
芝麻 | 茎杆 | 25 | 25 | 100% | 23 | 92.00% | ||
花生 | 茎杆 | 24 | 23 | 95.83% | 21 | 87.50% | ||
番茄 | 叶片 | 23 | 23 | 100% | 21 | 91.30% | ||
马铃薯 | 块茎 | 24 | 23 | 95.83% | 22 | 91.67% | ||
甘薯 | 块茎 | 22 | 21 | 95.45% | 20 | 90.91% |
来源植物 | 取样部位 | 样本数量 | LAMP检测 | PCR检测 | ||||
---|---|---|---|---|---|---|---|---|
检出总数 | 检出率 | 检出总数 | 检出率 | |||||
芝麻 | 茎杆 | 25 | 25 | 100% | 23 | 92.00% | ||
花生 | 茎杆 | 24 | 23 | 95.83% | 21 | 87.50% | ||
番茄 | 叶片 | 23 | 23 | 100% | 21 | 91.30% | ||
马铃薯 | 块茎 | 24 | 23 | 95.83% | 22 | 91.67% | ||
甘薯 | 块茎 | 22 | 21 | 95.45% | 20 | 90.91% |
[1] |
Mansfield J, Genin S, Magori S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology, 2012,13(6):614-629.
doi: 10.1111/j.1364-3703.2012.00804.x URL pmid: 22672649 |
[2] | Patil VU, Girimalla V, Sagar V, et al. Genome sequencing of four strains of Phylotype I, II and IV of Ralstonia solanacearum that cause potato bacterial wilt in India[J]. Brazilian Journal of Microbiology, 2017,48(2):193-195. |
[3] | Bocsanczy AM, Espindola AS, Norman DJ. Whole-genome sequences of Ralstonia solanacearum strains P816, P822, and P824, emerging pathogens of blueberry in Florida[J]. Microbiology Resource Announcements, 2019,8(3):e01316-18. |
[4] |
Jiang G, Wei Z, Xu J, et al. Bacterial wilt in China:history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017,8:1549.
URL pmid: 28955350 |
[5] | Álvarez B, López1 MM, Biosca EG. Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages[J]. Fronter in Microbiology, 2019,10:2813. |
[6] | Tan X, Qiu H, Li F, et al. Complete genome sequence of sequevar 14M Ralstonia solanacearum strain HA4-1 reveals novel type III effectors acquired through horizontal gene transfer[J]. Fronter in Microbiology, 2019,10:1893. |
[7] | Wang H, Qi J, Xiao D, et al. A re-evaluation of dilution for eliminating PCR inhibition in soil DNA samples[J]. Soil Biology and Biochemistry, 2017,106:109-118. |
[8] | Gorny AM, Wang X, Hay FS, et al. Development of a species-specific PCR for detection and quantification of Meloidogyne hapla in soil using the 16D10 root-knot nematode effector gene[J]. Plant Disease, 2019,103(8):1902-1909. |
[9] | Villa JE, Tsuchiya K, Horita M, et al. Phylogenetic relationships of Ralstonia solanacearum species complex strains from Asia and other continents based on 16S rDNA, endoglucanase, and hrpB gene sequences[J]. Journal of General Plant Pathology, 2005,71(1):39-46. |
[10] | Singh D, Sinha S, Chaudhary G, et al. Biological characterization and genetic diversity of Indian strains of Ralstonia solanacearum Biovars 3 and 4 causing bacterial wilt of tomato[J]. Journal of Plant Pathology and Microbiology, 2018,9(443):2. |
[11] |
Caruso P, Bertolini E, Cambra M, et al. A new and sensitive co-operational polymerase chain reaction for rapid detection of Ralstonia solanacearum in water[J]. Journal of Microbiological Methods, 2003,55(1):257-272.
URL pmid: 14500017 |
[12] | Vreeburg RAM, Zendman AJW, Pol A, et al. Validation of four real-time TaqMan PCR s for the detection of Ralstonia solanacearum and/or Ralstonia pseudosolanacearum and/or Clavibacter michiganensis subsp. sepedonicus in potato tubers using a statistical regression approach[J]. EPPO Bulletin, 2018,48(1):86-96. |
[13] | Kubota R, Vine BG, Alvarez AM, Jenkins DM. Detection of Ralstonia solanacearum by loop-mediated isothermal amplification[J]. Bacteriology, 2008,98(9):1045-1051. |
[14] | Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000,28(12):e63. |
[15] | 贾蒙骜, 陈兴江, 林叶春, 等. 基于环式等温扩增的烟草青枯病病原菌快速检测方法[J]. 中国农业大学学报, 2014,19(1):93-98. |
Jia MA, Chen XJ, Lin YC, et al. Rapid and sensitive detection method for Ralstonia solanacearum based on Loop-mediated isothermal amplification[J]. Journal of China Agricultural University, 2014,19(1):93-98. | |
[16] | Morisset D, Pirc M, Llop P, et al. Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum[J]. PLoS One, 2014,9(4):e96027. |
[17] | 黄雯, 徐进, 张昊, 等. 植物青枯菌LAMP检测方法的建立[J]. 中国农业科学, 2016,49(11):2093-2102. |
Huang W, Xu J, Zhang H, et al. Development of a LAMP approach for detection of Ralstonia solanacearum[J]. Scientia Agricultura Sinica, 2016,49(11):2093-2102. | |
[18] | Okiro LA, Tancos MA, Nyanjom SG, et al. Comparative evaluation of LAMP, qPCR, conventional PCR, and ELISA to detect Ralstonia solanacearum in Kenyan potato fields[J]. Plant Disease, 2019,103(5):959-965. |
[19] | Notomi T, Mori Y, Tomita N, et al. Loop-mediated isothermal amplification(LAMP):principle, features, and future prospects[J]. Journal of Microbiology, 2015,53(1):1-5. |
[20] | 华菊玲, 胡白石, 李湘民, 等. 芝麻细菌性青枯病病原菌及其生化变种鉴定[J]. 植物保护学报, 2012,39(1):39-44. |
Hua JL, Hu BS, Li XM, et al. Identification of the pathogen causing bacterial wilt of sesame and its biovars[J]. Acta Phytophylacica Sinica, 2012,39(1):39-44. | |
[21] |
El Sayed T, Samuel J, Nour E, et al. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota and Ralstonia solanacearum[J]. Frontiers in Microbiology, 2019,10:2835.
doi: 10.3389/fmicb.2019.02835 URL pmid: 31998244 |
[22] | Rajapaksha R, Kohombange S, Dissanayake D, et al. Bitter gourd(Memordica charantia L.), new host of Ralstonia solanacearum in Sri Lanka[J]. International Journal of Recent Innovations in Academic Research, 2019,3(7):111-118. |
[23] |
Lin CH, Chuang MH, Wang JF. First report of bacterial wilt caused by Ralstonia solanacearum on Chard in Taiwan[J]. Plant Disease, 2015,99(2):282-282.
doi: 10.1094/PDIS-07-14-0780-PDN URL pmid: 30699590 |
[24] | Jiang Y, Li B, Liu P, et al. First report of bacterial wilt caused by Ralstonia solanacearum on fig trees in China[J]. Forest Pathology, 2016,46(3):256-258. |
[25] | Weibel J, Tran TM, Bocsanczy AM, et al. A Ralstonia solanacearum strain from Guatemala infects diverse flower crops, including new asymptomatic hosts vinca and sutera, and causes symptoms in geranium, mandevilla vine, and new host African daisy(Osteospermum ecklonis)[J]. Plant Health Progress, 2016,17(2):114-121. |
[26] | Huang Q, Allen C. Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants[J]. Physiological and Molecular Plant Pathology, 2000,57(2):77-83. |
[27] | Caldwell D, Kim BS, Iyer-Pascuzzi AS. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants[J]. Phytopathology, 2017,107(5):528-536. |
[28] | Weibel J, Tran TM, Bocsanczy AM, et al. A Ralstonia solanacearum strain from Guatemala infects diverse flower crops, including new asymptomatic hosts vinca and sutera, and causes symptoms in geranium, mandevilla vine, and new host African daisy(Osteospe-rmum ecklonis)[J]. Plant Health Progress, 2016,17(2):114-121. |
[29] | Sagcan H, Kara NT. Detection of Potato ring rot Pathogen Clavibacter michiganensis subsp. s epedonicus by Loop-mediated isothermal amplification(LAMP)assay[J]. Scientific Reports, 2019,9(1):1-8. |
[30] | Chen ZD, Kang HJ, Chai AL, et al. Development of a loop-mediated isothermal amplification(LAMP)assay for rapid detection of Pseudomonas syringae pv. tomato in planta[J]. European Journal of Plant Pathology, 2020,156:739-750. |
[31] | Ocenar J, Arizala D, Boluk G, et al. Development of a robust, field-deployable loop-mediated isothermal amplification(LAMP)assay for specific detection of potato pathogen Dickeya dianthicola targeting a unique genomic region[J]. PLoS One, 2019,14(6):e0218868. |
[32] | Dobhal S, Larrea-Sarmiento A, Alvarez AM, et al. Development of a loop-mediated isothermal amplification assay for specific detection of all known subspecies of Clavibacter michiganensis[J]. Journal of Applied Microbiology, 2019,126(2):388-401. |
[33] | Drais MI, Maheshwari Y, Selvaraj V, et al. Development and validation of a loop-mediated isothermal amplification technique(LAMP)for the detection of Spiroplasma citri, the causal agent of citrus stubborn disease[J]. European Journal of Plant Pathology, 2019,155(1):125-134. |
[34] | 陈瑞朋. 烟草野火病菌与角斑病菌LAMP快速检测方法的建立与应用[D]. 泰安:山东农业大学, 2018. |
Chen RP. Development and application of a loop-mediated isothermal amplification method for rapid detection of Pseudomonas syringae pv. tabaci and Pseudomonas syringae pv. Angulata[D]. Taian:Shandong Agricultural University, 2018. | |
[35] | Sun M, Liu H, Huang J, et al. A loop-mediated isothermal amplification assay for rapid detection of Pectobacterium aroidearum that causes soft rot in Konjac[J]. International Journal of Molecular Sciences, 2019,20(8):1937. |
[36] | Ghosh DK, Bhose S, BhoWarghanese A, et al. Loop-mediated isothermal amplification(LAMP)based method for rapid and sensitive detection of ‘Candidatus Liberibacter asiaticus’ in citrus and the psyllid vector, Diaphorina citri Kuwayama[J]. Journal of Plant Biochemistry and Biotechnology, 2016,25(2):219-223. |
[37] | Kalpage HA, Bazylianska V, Recanati MA, et al. Tissue-specific regulation of cytochrome c by post-translational modifications:respiration, the mitochondrial membrane potential, ROS, and apoptosis[J]. The FASEB Journal, 2019,33(2):1540-1553. |
[38] | Kang MJ, Lee MH, Shim JK, et al. PCR-based specific detection of Ralstonia solanacearum by amplification of cytochrome c1 signal peptide sequences[J]. Journal of Microbiology and Biotechnology, 2007,17(11):1765-1771. |
[39] | 胡利伟, 牟文君, 郭建华, 等. 基于锁核苷酸(LNA)增敏的植烟土壤青枯雷尔氏菌定量PCR检测[J]. 烟草科技, 2017,50(12):14-21. |
Hu LW, Mu WJ, Guo JH, et al. Locked nucleic acid-enhanced quantitative real-time PCR detection of Ralstonia solanacearum in tobacco planting soil[J]. Tobacco Science and Technology, 2017,50(12):14-21. | |
[40] | Lau YL, Lai MY, Teoh BT, et al. Colorimetric detection of dengue by single tube reverse-transcription-loop-mediated isothermal amplification[J]. PLoS One, 2015,10(9):e0138694. |
[41] | Salinas NR, Little DP. Electric LAMP:virtual loop-mediated isothermal amplification[J]. ISRN Bioinform, 2012,21:696758. |
[42] | Santiago-Felipe S, Tortajada-Genaro LA, Carrascosa J, et al. Real-time loop-mediated isothermal DNA amplification in compact disc micro-reactors[J]. Biosensors and Bioelectronics, 2016,79:300-306. |
[43] | Wong YP, Othman S, Lau YL, et al. Loop-mediated isothermal amplification(LAMP):a versatile technique for detection of micro-organisms[J]. Journal of Applied Microbiology, 2018,124(3):626-643. |
[44] | 应淑敏, 郭俭, 王教瑜, 等. 环介导等温扩增技术在植物病原物检测中的应用[J]. 植物保护学报, 2020,47(2):234-244. |
Ying SM, Guo J, Wang JY, et al. Application of LAMP in the detection of plant pathogens[J]. Acta Phytophylacica Sinica, 2020,47(2):234-244. | |
[45] | Chen HW, Weissenberger G, Ching WM. Development of lyophilized loop-mediated isothermal amplification reagents for the detection of Leptospira[J]. Military Medicine, 2016,181(S5):227-231. |
[46] | Huang M, Zhou X, Wang H, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Analytical Chemistry, 2018,90(3):2193-2200. |
[47] | Teng F, Guo L, Cui T, et al. CDetection:CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J]. Genome Biology, 2019,20(1):1-7. |
[48] | Bao Y, Jiang Y, Xiong E, et al. CUT-LAMP:Contamination-free loop-mediated isothermal amplification based on the CRISPR/Cas9 cleavage[J]. ACS Sensors, 2020,5(4):1082-1091. |
[49] | 林晟豪, 杜再慧, 张秀杰, 等. 基于环介导等温扩增技术的生物传感器研究进展[J]. 生物技术进展, 2019,9(6):599-610. |
Lin SH, Du ZH, Zhang XJ, et al. Progress on biosensors based on loop-mediated isothermal amplification[J]. Current Biotechnology, 2019,9(6):599-610. | |
[50] | 高威芳, 章礼平, 朱鹏. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报, 2020,36(5):22-31. |
Gao WF, Zhang LP, Zhu P. Recent progress on isothermal amplification technology and its combination with CRISPR in rapid detection of microorganisms[J]. Biotechnology Bulletin, 2020,36(5):22-31. | |
[51] | Mukama O, de Dieu Habimana J, Meng X, et al. Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics[J]. Analytical Biochemistry, 2020: 113762. |
[1] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[2] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[3] | LI Jia-le, LIN Sheng-hao, XU Wen-tao. Construction of an Ultra-sensitive Colorimetric Biosensor for Insect Resistance Genes Based on Loop-mediated Isothermal Amplification [J]. Biotechnology Bulletin, 2022, 38(8): 69-76. |
[4] | LI Ting-ting, DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan, LI Rong, SHEN Qi-rong. Effects of Ralstonia solanacearum Infection on Soil Fungal Community Diversity [J]. Biotechnology Bulletin, 2022, 38(10): 195-203. |
[5] | FU Zhi-qiang, XIONG Yan. Research Progress on Portable Bio-optical Sensors [J]. Biotechnology Bulletin, 2021, 37(3): 219-226. |
[6] | WANG Xiao-fang, HOU Yu-gang, YANG Ke-ming, WANG Jia-ning, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Isolation of Specific Phage of Ralstonia solanacearum and Its Effects on Control of Soil-borne Bacterial Wilt Disease [J]. Biotechnology Bulletin, 2020, 36(9): 194-201. |
[7] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[8] | GAO Wei-fang, ZHANG Li-ping, ZHU Peng. Recent Progress on Isothermal Amplification Technology and Its Combination with CRISPR in Rapid Detection of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(5): 22-31. |
[9] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
[10] | LI Qiu-fen, LIU Qi-chen, XU Ai-ling, ZHANG Yan, SONG Zhi-wen. Screening of Aerobic Denitrifying Bacteria Based on Loop-mediated Isothermal Amplification and Denitrification Performance [J]. Biotechnology Bulletin, 2019, 35(9): 210-217. |
[11] | LIN Hui-jiao, YANG Hua-wei, GU Heng-sen, JIANG Xiang, ZHANG Hai-lei, LIU Yu-chen, ZHOU Er-xun. Development of Dipstick for the Rapid Detection of Three Important Monilinia Species on Fruits [J]. Biotechnology Bulletin, 2019, 35(6): 205-212. |
[12] | GUO Pei, ZHAO Long, HU He. A Rapid Method of Detecting Viable Legionella pneumophila in the Water Environment of Public Places [J]. Biotechnology Bulletin, 2019, 35(3): 203-209. |
[13] | LI Zi-wei, DENG Zhong-liang. Application of a Loop-mediated Isothermal Amplification Method for Rapid Diagnosis of Francisella tularensis [J]. Biotechnology Bulletin, 2019, 35(2): 212-217. |
[14] | ZHANG Wei, LI Zhi-xin, FU Chun-jiang, LIU Wei-ping. Development of a Colloidal Gold Immunochromatographic Test Strip for the Detection of Potato Virus S [J]. Biotechnology Bulletin, 2019, 35(12): 184-188. |
[15] | LIANG Yu-lin, LIU Xiu ,ZHOU Peng-fei ,ZHOU Zhen-sen, YIN Jian-jun. Detection of Escherichia coli O157 by Reverse Transcriptase Loop-Mediated Isothermal Amplification [J]. Biotechnology Bulletin, 2018, 34(6): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||