Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (11): 158-165.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1120
Previous Articles Next Articles
TAO Zhi-dong1(), HE Yan-hui1, DENG Zi-he2, SUN Lin-lin1, WU Zhan-sheng1()
Received:
2021-08-31
Online:
2021-11-26
Published:
2021-12-03
Contact:
WU Zhan-sheng
E-mail:3188937343@qq.com;wuzhans@xpu.edu.cn
TAO Zhi-dong, HE Yan-hui, DENG Zi-he, SUN Lin-lin, WU Zhan-sheng. Screening of High-efficiency Cellulose-degrading Microorganism from Spent Lentinula edodes Substrate and Optimization of Its Enzyme Production[J]. Biotechnology Bulletin, 2021, 37(11): 158-165.
菌株编号 Strain No. | 滤纸条崩解程度 Degradation degree of filter paper | 筛选温度 Screening temperature/℃ | 菌株编号 Strain No. | 滤纸条崩解程度 Degradation degree of filter paper | 筛选温度 Screening temperature/℃ | |
---|---|---|---|---|---|---|
DF1 | + | 28 | YD3 | +++ | 28 | |
GF1 | ++ | 45 | YG4 | ++ | 45 | |
GF2 | + | 45 | YD2 | ++ | 28 | |
YG1 | + | 45 | DGW1 | ++++ | 28 | |
DG3 | + | 28 | FYG2 | + | 45 | |
GF3 | +++ | 45 | FYG3 | ++ | 45 | |
YG3 | + | 45 | FFD1 | + | 28 | |
YD4 | ++++ | 28 | FYG1 | ++ | 45 | |
GG1 | + | 45 | FDY2 | + | 28 | |
YG2 | +++ | 45 | FGF1 | ++ | 45 | |
YD1 | ++ | 28 | FFD2 | + | 28 |
Table 1 Filter strip degradation by 22 isolated strains
菌株编号 Strain No. | 滤纸条崩解程度 Degradation degree of filter paper | 筛选温度 Screening temperature/℃ | 菌株编号 Strain No. | 滤纸条崩解程度 Degradation degree of filter paper | 筛选温度 Screening temperature/℃ | |
---|---|---|---|---|---|---|
DF1 | + | 28 | YD3 | +++ | 28 | |
GF1 | ++ | 45 | YG4 | ++ | 45 | |
GF2 | + | 45 | YD2 | ++ | 28 | |
YG1 | + | 45 | DGW1 | ++++ | 28 | |
DG3 | + | 28 | FYG2 | + | 45 | |
GF3 | +++ | 45 | FYG3 | ++ | 45 | |
YG3 | + | 45 | FFD1 | + | 28 | |
YD4 | ++++ | 28 | FYG1 | ++ | 45 | |
GG1 | + | 45 | FDY2 | + | 28 | |
YG2 | +++ | 45 | FGF1 | ++ | 45 | |
YD1 | ++ | 28 | FFD2 | + | 28 |
Fig.5 Morphology of the strain DGW1 A:Morphology of the strain DGW1;B:spore morphology of strain DGW1;C:mycelial morphology of strain DGW1;D:mycelial morphology of strain DGW1 under SCM
Fig.6 Enzyme activity of strain DGW1 under different conditions A:Enzyme activity of strain DGW1 at different pH. B:Enzyme activity of strain DGW1 at different temperature. C:Enzyme activity of strain DGW1 at different times
[1] |
Williams BC, McMullan JT, McCahey S. An initial assessment of spent mushroom compost as a potential energy feedstock[J]. Bioresour Technol, 2001, 79(3): 227-230.
doi: 10.1016/S0960-8524(01)00073-6 URL |
[2] |
Phan CW, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes[J]. Appl Microbiol Biotechnol, 2012, 96(4): 863-873.
doi: 10.1007/s00253-012-4446-9 URL |
[3] |
Jordan SN, Mullen GJ, Murphy MC. Composition variability of spent mushroom compost in Ireland[J]. Bioresour Technol, 2008, 99(2): 411-418.
doi: 10.1016/j.biortech.2006.12.012 URL |
[4] |
Lin HN, Wang YT, Zhu MJ. Evaluation of spent mushroom compost as a lignocellulosic substrate for hydrogen production by Clostridium thermocellum[J]. Int J Hydrog Energy, 2017, 42(43): 26687-26694.
doi: 10.1016/j.ijhydene.2017.09.040 URL |
[5] | 张玲秀, 董社琴. 玉米秸秆纤维素降解处理方法研究[J]. 安徽农学通报, 2018, 24(Z1): 14-15, 20. |
Zhang LX, Dong SQ. Study on the treatment of corn stalk cellulose degradation[J]. Anhui Agric Sci Bull, 2018, 24(Z1): 14-15, 20. | |
[6] |
Chi CP, Chu S, Wang B, et al. Dynamic bacterial assembly driven by Streptomyces griseorubens JSD-1 inoculants correspond to composting performance in swine manure and rice straw co-composting[J]. Bioresour Technol, 2020, 313: 123692.
doi: 10.1016/j.biortech.2020.123692 URL |
[7] |
Chen Y, Wang W, Zhou D, et al. Acetobacter orientalis XJC-C with a high lignocellulosic biomass-degrading ability improves significantly composting efficiency of banana residues by increasing metabolic activity and functional diversity of bacterial community[J]. Bioresour Technol, 2021, 324: 124661.
doi: 10.1016/j.biortech.2020.124661 URL |
[8] |
Jiang GF, Chen PJ, Bao YZ, et al. Isolation of a novel psychrotrophic fungus for efficient low-temperature composting[J]. Bioresour Technol, 2021, 331: 125049.
doi: 10.1016/j.biortech.2021.125049 URL |
[9] |
Sadhu S. Cellulase production by bacteria:a review[J]. Br Microbiol Res J, 2013, 3(3): 235-258.
doi: 10.9734/BMRJ URL |
[10] | 刘晓梅, 邹亚杰, 胡清秀, 等. 菌渣纤维素降解菌的筛选与鉴定[J]. 农业环境科学学报, 2015, 34(7): 1384-1391. |
Liu XM, Zou YJ, Hu QX, et al. Screening and identification of cellulose-degrading bacteria from spent substrate of edible mushroom[J]. J Agro Environ Sci, 2015, 34(7): 1384-1391. | |
[11] |
Pang J, Liu ZY, Hao M, et al. An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw[J]. Biotechnol Biofuels, 2017, 10: 165.
doi: 10.1186/s13068-017-0852-7 URL |
[12] | 李日强, 辛小芸, 刘继青. 天然秸秆纤维素分解菌的分离选育[J]. 上海环境科学, 2002, 21(1): 8-11. |
Li RQ, Xin XY, Liu JQ. Isolation and Screening on Straw Cellulose-Decomposting Microorgnisms[J]. Shanghai Environment Sciences, 2002, 21(1): 8-11. | |
[13] |
Dar MA, Pawar KD, Jadhav JP, et al. Isolation of cellulolytic bacteria from the gastro-intestinal tract of Achatina fulica(Gastropoda:Pulmonata)and their evaluation for cellulose biodegradation[J]. Int Biodeterior Biodegrad, 2015, 98: 73-80.
doi: 10.1016/j.ibiod.2014.11.016 URL |
[14] |
Ghose TK, Bisaria VS. Measurement of hemicellulase activities:Part I Xylanases[J]. Pure Appl Chem, 1987, 59(12): 1739-1751.
doi: 10.1351/pac198759121739 URL |
[15] |
李林超, 张超, 董庆, 等. 堆肥过程中纤维素降解菌的分离与鉴定[J]. 生物技术通报, 2019, 35(9): 165-171.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0581 |
Li LC, Zhang C, Dong Q, et al. Isolation and identification of cellulose degrading microorganisms in composting process[J]. Biotechnol Bull, 2019, 35(9): 165-171. | |
[16] |
Sun CY, Wei YB, Kou JN, et al. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting[J]. J Clean Prod, 2021, 299: 126928.
doi: 10.1016/j.jclepro.2021.126928 URL |
[17] |
Harnvoravongchai P, Singwisut R, Ounjai P, et al. Isolation and characterization of thermophilic cellulose and hemicellulose degrading bacterium, Thermoanaerobacterium sp. R63 from tropical dry deciduous forest soil[J]. PLoS One, 2020, 15(7): e0236518.
doi: 10.1371/journal.pone.0236518 URL |
[18] | 沙沙, 刘心怡, 张玉林, 等. 一株产纤维素酶的暹罗芽孢杆菌筛选及产酶条件优化[J]. 河南科学, 2019, 37(7): 1073-1081. |
Sha S, Liu XY, Zhang YL, et al. UV mutagenesis and fermentation conditions optimization of a cellulase-producing marine Bacillus siamensis[J]. Henan Sci, 2019, 37(7): 1073-1081. | |
[19] |
吴婧, 聂彩娥, 朱媛媛, 等. 一株兼具产IAA能力纤维素降解菌的筛选、鉴定及条件优化[J]. 生物技术通报, 2020, 36(12): 54-63.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0454 |
Wu Q, Nie CE, Zhu YY, et al. Isolation, identification of a cellulose-degrading bacterium with IAA-producing ability and optimization of its culture conditions[J]. Biotechnol Bull, 2020, 36(12): 54-63. | |
[20] |
Fanuel M, Garajova S, Ropartz D, et al. The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans[J]. Biotechnol Biofuels, 2017, 10: 63.
doi: 10.1186/s13068-017-0749-5 URL |
[21] |
Özer CO, Kılıç B. Optimization of pH, time, temperature, variety and concentration of the added fatty acid and the initial count of added lactic acid Bacteria strains to improve microbial conjugated linoleic acid production in fermented ground beef[J]. Meat Sci, 2021, 171: 108303.
doi: 10.1016/j.meatsci.2020.108303 URL |
[22] | 梅金飞, 刚利萍, 余梅霞, 等. 烟草秸秆废弃物中纤维素降解菌的筛选、鉴定及产酶条件优化[J]. 烟草科技, 2020, 53(8): 15-23. |
Mei JF, Gang LP, Yu MX, et al. Screening and identification of cellulose-degrading bacteria in waste tobacco stalks and optimization of enzyme production conditions[J]. Tob Sci Technol, 2020, 53(8): 15-23. | |
[23] |
Darabzadeh N, Hamidi-Esfahani Z, Hejazi P. Optimization of cellulase production under solid-state fermentation by a new mutant strain of Trichoderma reesei[J]. Food Sci Nutr, 2019, 7(2): 572-578.
doi: 10.1002/fsn3.852 pmid: 30847136 |
[24] |
Karthika A, Seenivasagan R, Kasimani R, et al. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste[J]. Waste Manag, 2020, 116: 58-65.
doi: 10.1016/j.wasman.2020.06.036 URL |
[25] |
Dar MA, Pawar KD, Pandit RS. Prospecting the gut fluid of giant African land snail, Achatina fulica for cellulose degrading bacteria[J]. Int Biodeterior Biodegrad, 2018, 126: 103-111.
doi: 10.1016/j.ibiod.2017.10.006 URL |
[1] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[2] | YUAN Cun-xia, LI Yan-nan, ZHANG Xiao-chong, YANG Rui, LIU Jian-li, LI Jing-yu. Physiological and Biochemical Response Characteristics of Bacillus sp. ZJS3 Under As3+ Stress [J]. Biotechnology Bulletin, 2022, 38(7): 236-246. |
[3] | WANG Xiao-qin, HUANG Yin-ping, WANG Wei-qian, WU Ping, QUAN Shu. Expression and Purification of the MLL3SET Protein with a Site-directed Mutation of an Unnatural Amino Acid [J]. Biotechnology Bulletin, 2022, 38(3): 194-202. |
[4] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[5] | WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality [J]. Biotechnology Bulletin, 2022, 38(1): 125-131. |
[6] | YUAN Yuan, WANG Lei, SHI Ya-wei. Research Advances in Strategies for Improving the Activity of Microbial-derived Alkaline Proteases [J]. Biotechnology Bulletin, 2021, 37(5): 231-236. |
[7] | CHEN Xiao-yu, ZHANG Jian, ZHANG Xin-ya, TANG Yu-ting, SHAO Yu-chen, LUO Zhi-dan, LU Chen. A Rapid and Accurate Method for Tth DNA Polymerase Activity Assay [J]. Biotechnology Bulletin, 2021, 37(5): 281-286. |
[8] | XIE Guo-zhen, TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin. Effects of Total Glycosides of Qiwei Baizhu Powder on Intestinal Microbiota and Enzyme Activities in Diarrhea Mice [J]. Biotechnology Bulletin, 2021, 37(12): 124-131. |
[9] | TIAN Geng, GAO Wei-qiang, CHEN Xiao-bo, ZHANG Chun-xiao. Directed Mutagenesis of β-mannanase Gene from Bacillus licheniformis KD-1 for Improving Enzyme Activity and Stability [J]. Biotechnology Bulletin, 2021, 37(10): 100-109. |
[10] | WANG Xiang-feng, WANG Qiao, YUAN Hui-jun, WANG Li. Screening and Identification of High-yield Feruloyl Esterase Strains and Optimizing of the Enzyme Activity Assay Conditions [J]. Biotechnology Bulletin, 2020, 36(10): 135-141. |
[11] | MENG Jian-yu, JI Jin-hua, JIA Li-juan, GUO Hui-qin, TAO Yu, FENG Fu-ying. Isolation of Cold-adapted Cellulose-degrading Bacteria Using Three Different Carbon Sources and Analysis on the Degrading Ability of Consortia [J]. Biotechnology Bulletin, 2019, 35(8): 77-84. |
[12] | GENG Xiu-xiu, ZHOU Zheng-fu, LIU Ying-ying, PING Shu-zhen, WANG Jin. Cloning and Identification of Keratinase Gene from Deinococcus gobiensis I-0 [J]. Biotechnology Bulletin, 2019, 35(3): 65-70. |
[13] | CHEN Jian-jun, LIU Liang-tao, CAO Xiang-lin. Cloning,Expression and Enzyme Production of Laccase Gene lac1680 in Phanerochaete chrysosporium [J]. Biotechnology Bulletin, 2018, 34(4): 214-220. |
[14] | LIU Xiao-li, JIANG Shi-jie, XUE Dong, LIU Ying-ying, WU Xiao-li, FENG Shuai, HAN Jia-hui, WANG Yu-zhou, PING Shu-zhen, WANG Jin. Construction and Biological Characterization of Gene dlp Deletion Mutant of Deinococcus radiodurans R1 [J]. Biotechnology Bulletin, 2017, 33(2): 155-163. |
[15] | Wu Xuejun, Cui Baokai. A Study on the Degradation Capacity of Several Non-model White-rot Fungi [J]. Biotechnology Bulletin, 2015, 31(6): 151-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||