Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 165-173.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1275
Previous Articles Next Articles
LI Lu-ping(), LIANG Da-cheng()
Received:
2020-10-19
Online:
2021-05-26
Published:
2021-06-11
Contact:
LIANG Da-cheng
E-mail:201871364@yangtzeu.edu.cn;dachengliang@yangtzeu.edu.cn
LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants[J]. Biotechnology Bulletin, 2021, 37(5): 165-173.
Fig. 2 A schematic representation of H2O2-mediated triggering intrinsic signaling pathways in cell HPCA1 kinase activity leads to Ca2+ influx into the cells through an unknown mechanism, triggering intrinsic and systemic signaling pathways by combining with calmodulin (CAM) and calcium-sensing receptor (CAS). Ca2+ signaling activates calcium-dependent protein kinase (CDPK) and regulates transcription factor activity through protein phosphorylation. Ca2+ influx also activates respiratory burst oxidase (RBOH) to produce reactive oxygen species. H2O2 can enter the cell via aquaporin
Fig. 3 ROS-mediated in organelles signaling Mitochondria produce ROS in the electron transport chain of respiratory metabolism. Alternative oxidase 1 protein (AOX1) is expressed among this reaction. The ROS production signal in chloroplast is transmitted to mitochondria via malate shuttle. Leakage of electrons from the transport chain at PSI and PS Ⅱ system leads to ROS production and the change of redox state in chloroplast. PAP retrograde signaling might influence RCD1 stability and redox status in nucleus, thus regulating nuclear gene expression. Stromules are tubular extensions of chloroplasts
[1] |
Foyer CH, Noctor G. Redox signaling in plants[J]. Antioxid Redox Signal, 2013,18(16):2087-2090.
doi: 10.1089/ars.2013.5278 URL |
[2] |
Grene R. Oxidative stress and acclimation mechanisms in plants[J]. Arabidopsis Book, 2002,1:e0036.
doi: 10.1199/tab.0036.1 URL |
[3] | Hakeem K, Rehman R, Tahir I. Plant signaling:Understanding the molecular crosstalk[M]. India:Springer, 2014. |
[4] |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends Plant Science, 2004,9(10):490-498.
doi: 10.1016/j.tplants.2004.08.009 URL |
[5] |
Roxas VP, Lodhi SA, Garrett DK, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione Peroxidase[J]. Plant Cell Physiology, 2000,41(11):1229-1234.
doi: 10.1093/pcp/pcd051 URL |
[6] |
Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling[J]. Science, 2003,300(5619):650-653.
doi: 10.1126/science.1080405 URL |
[7] |
Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004,55(1):373-399.
doi: 10.1146/annurev.arplant.55.031903.141701 URL |
[8] | Rinalducci S, Pedersen JZ, Zolla L. Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II[J]. Biochimica et Biophysica Acta, 2004,1608(1):63-73. |
[9] | Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism[J]. Photosynjournal Research, 2008,98(1-3):551-564. |
[10] | Wang LS, Kim CH, Xu X, et al. Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(26):E3792-E3800. |
[11] |
Dogra V, Kim C. Singlet oxygen metabolism:from genesis to signaling[J]. Frontiers in Plant Science, 2020,10:1640.
doi: 10.3389/fpls.2019.01640 URL |
[12] |
Skovsen E, Snyder JW, Lambert JDC, et al. Lifetime and diffusion of singlet oxygen in a cell[J]. The Journal of Physical Chemistry B, 2005,109(18):8570-8573.
doi: 10.1021/jp051163i URL |
[13] | Tripathi DK, Singh S, Singh VP, et al. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance[J]. Frontiers in Environmental Science, 2016,4:46. |
[14] | Niu LJ, Liao WB. Hydrogen peroxide signaling in plant development and abiotic responses:crosstalk with nitric oxide and calcium[J]. Frontiers in Plant Science, 2016,7:230. |
[15] |
Raggi S, Ferrarini A, Delledonne M, et al. The Arabidopsis Class III Peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage[J]. Plant Physiology, 2015,169(4):2513-2525.
doi: 10.1104/pp.15.01464 pmid: 26468518 |
[16] |
Kaya H, Nakajima R, Iwano M, et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth[J]. Plant Cell, 2014,26(3):1069-1080.
doi: 10.1105/tpc.113.120642 URL |
[17] |
Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ros controls transition from proliferation to differentiation in the root[J]. Cell, 2010,143(4):606-616.
doi: 10.1016/j.cell.2010.10.020 pmid: 21074051 |
[18] |
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine[J]. Journal of Free Radical in Biology and Medicine, 1999,1:331-334.
doi: 10.1016/0748-5514(85)90140-0 URL |
[19] |
Duan Q, Kita D, Johnson EA, et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabi-dopsis[J]. Nature Communications, 2014,5:3129.
doi: 10.1038/ncomms4129 URL |
[20] |
Smirnova AV, Matveyeva NP, Yermakov IP. Reactive oxygen species are involved in regulation of pollen wall cytomechanics[J]. Plant Biology, 2014,16(1):252-257.
doi: 10.1111/plb.12004 URL |
[21] |
Richards SL, Wilkins KA, Swarbreck SM, et al. The hydroxyl radical in plants:from seed to seed[J]. Journal of Experimental Botany, 2015,66(1):37-46.
doi: 10.1093/jxb/eru398 pmid: 25294918 |
[22] |
Whitaker C, Beckett R, Minibayeva FV, et al. Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds[J]. South African Journal of Botany, 2010,76(3):601-605.
doi: 10.1016/j.sajb.2010.04.014 URL |
[23] |
Bindschedler LV, Dewdney J, Blee KA, et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance[J]. Plant Journal, 2006,47(6):851-863.
pmid: 16889645 |
[24] | Torres MA, Dangl JL, Jones JDG. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(1):517-522. |
[25] |
Suzuki N, Miller G, Morales J, et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Plant Biology, 2011,14(6):691-699.
doi: 10.1111/plb.2012.14.issue-5 URL |
[26] | Choi WG, Miller G, Wallace I, et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals[J]. Plant Journal for Cell & Molecular Biology, 2017,90(4):698-707. |
[27] |
Marshall A, Aalen RB, Audenaert D, et al. Tackling drought stress:receptor-like kinases present new approaches[J]. Plant Cell, 2012,24(6):2262-2278
doi: 10.1105/tpc.112.096677 URL |
[28] |
Wu F, Chi Y, Jiang ZH, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020,578(7796):577-581.
doi: 10.1038/s41586-020-2032-3 URL |
[29] |
Foyer CH, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiologia Plantarum, 2003,119(3):355-364.
doi: 10.1034/j.1399-3054.2003.00223.x URL |
[30] |
Jaspers P, Kangasjärvi J. Reactive oxygen species in abiotic stress signaling[J]. Physiologia Plantarum, 2010,138(4):405-413.
doi: 10.1111/ppl.2010.138.issue-4 URL |
[31] | Barajas-López JDD, Blanco NE, Strand A. Plastid-to-nucleus communication, signals controlling the running of the plant cell[J]. Biochimica et Biophysica Acta, 2013,1833(2):425-437. |
[32] |
Estavillo GM, Crisp PA, Pornsiriwong W, et al. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis[J]. Plant Cell, 2011,23(11):3992-4012.
doi: 10.1105/tpc.111.091033 URL |
[33] |
Telfer A. Singlet oxygen production by PSII under light stress:mechanism, detection and the protective role of β-carotene[J]. Plant Cell Physiology, 2014,55(7):1216-1223.
doi: 10.1093/pcp/pcu040 URL |
[34] | Ramel F, Birtic S, Ginies C, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(14):5535-5540. |
[35] |
Avendano-Vazquez AO, Cordoba E, Llamas E, et al. An uncharacterized apocarotenoid-derived signal generated in zeta-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis[J]. Plant Cell, 2014,26(6):2524-2537.
doi: 10.1105/tpc.114.123349 URL |
[36] | Van Norman JM, Zhang J, Cazzonelli C I, et al. Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(13):E1300-E1309. |
[37] |
Galvez-Valdivieso G, Mullineaux PM. The role of reactive oxygen species in signalling from chloroplasts to the nucleus[J]. Physiol Plantarum, 2010,138(4):430-439.
doi: 10.1111/ppl.2010.138.issue-4 URL |
[38] |
Farooq MA, Niazi AK, Akhtar A, et al. Acquiring control:The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses[J]. Plant Physiology and Biochemistry, 2019,141:353-369.
doi: 10.1016/j.plaphy.2019.04.039 URL |
[39] |
Koussevitzky S, Nott A, Mockler TC, et al. Multiple signals from damaged chloroplasts converge on a common pathway to regulate nuclear gene expression[J]. Science, 2007,316(5825):715-719.
doi: 10.1126/science. 1140516 URL |
[40] |
Hideg É, Kos PB, Vass I. Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves[J]. Physiologia Plantarum, 2007,131(1):33-40
doi: 10.1111/ppl.2007.131.issue-1 URL |
[41] |
Przybyla D, Göbel C, Imboden A, et al. Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 2008,54(2):236-248.
doi: 10.1111/j.1365-313X.2008.03409.x URL |
[42] |
Wagne D, Przybyla D, Op den Camp R, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thali-ana[J]. Science, 2004,306(5699):1183-1185.
doi: 10.1126/science.1103178 URL |
[43] | Lee KP, Kim C, Landgraf F, et al. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(24):10270-10275. |
[44] |
Kim C, Meskauskiene R, Zhang S, et al. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway[J]. Plant Cell, 2012,24(7):3026-3039.
doi: 10.1105/tpc.112.100479 URL |
[45] | Šimková K, Moreau F, Pawlak P, et al. Integration of stress-related and reactive oxygen species-mediated signals by Topoisomerase VI in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(40):16360-16365. |
[46] |
Mullineaux PM, Baker KNR. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants[J]. Plant Physiology, 2006,141(2):346-350.
doi: 10.1104/pp.106.078162 URL |
[47] |
Kohler RH, Cao J, Zipfel WR, et al. Exchange of protein molecules through connections between higher plant plastids[J]. Science, 1997,276(5321):2039-2042.
doi: 10.1126/science.276.5321.2039 URL |
[48] |
Caplan JL, Kumar AS, Park E, et al. Chloroplast stromules function during innate immunity[J]. Development Cell, 2015,34(1):45-57.
doi: 10.1016/j.devcel.2015.05.011 URL |
[49] |
Brunkard JO, Runkel AM, Zambryski PC. Chloroplasts extend stromules independently and in response to internal redox signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(32):10044-10049.
doi: 10.1073/pnas.1511570112 pmid: 26150490 |
[50] |
Ng S, Clercq ID, Aken OV, et al. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress[J]. Molecular Plant, 2014,7(7):1075-1093.
doi: 10.1093/mp/ssu037 URL |
[51] |
Giraud E, Aken VO, Ho LHM, et al. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of Alternative Oxidase1a[J]. Plant Physiology, 2009,150(3):1286-1296.
doi: 10.1104/pp.109.139782 URL |
[52] |
Clercq ID, Vermeirssen V, Aken OV, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. Plant Cell, 2013,25(9):3472-3490.
doi: 10.1105/tpc.113.117168 URL |
[53] |
Ng S, Ivanova A, Duncan O, et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis[J]. Plant Cell, 2013,25(9):3450-3471.
doi: 10.1105/tpc.113.113985 URL |
[54] |
Shapiguzov A, Vainonen JP, Hunter K, et al. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors[J]. eLife, 2019,8:e43284.
doi: 10.7554/eLife.43284 URL |
[55] | Carrie C, Whelan J. Widespread dual targeting of proteins in land plants:when, where, how and why[J]. Plant Signal & Behavior, 2013,8(8):e25034. |
[56] |
Wang Y, Lyu WH, Berkowitz O, et al. Inactivation of mitochondrial complex I induces the expression of a twin cysteine protein that targets and affects cytosolic, chloroplastidic and mitochondrial function[J]. Molecular Plant, 2016,9(5):696-710.
doi: 10.1016/j.molp.2016.01.009 URL |
[57] |
Strawn MA, Marr SK, Inoue K, et al. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynjournal exhibits properties consistent with a role in diverse stress responses[J]. The Journal Biological Chemistry, 2007,282(8):5919-5933.
doi: 10.1074/jbc.M605193200 URL |
[58] |
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence:its role in plant growth and development[J]. The Journal Experiment Botany, 2011,62(10):3321-3338.
doi: 10.1093/jxb/err031 URL |
[59] |
Garcion C, Lohmann A, Lamodiere E, et al. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis[J]. Plant Physiology, 2008,147(3):1279-1287.
doi: 10.1104/pp.108.119420 URL |
[60] |
Nie SJ, Yue HY, Zhou J, et al. Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana[J]. PLoS One, 2015,10(3):e0119853.
doi: 10.1371/journal.pone.0119853 URL |
[61] |
Liu R, Cao PF, Ren A, et al. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum[J]. Redox Biology, 2018,16:388-400.
doi: 10.1016/j.redox.2018.03.018 URL |
[62] |
Serrano M, Wang BJ, Aryal B, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiology, 2013,162(4):1815-1821.
doi: 10.1104/pp.113.218156 pmid: 23757404 |
[63] |
Aken VO, Breusegem VF. Licensed to kill:mitochondria, chloroplasts, and cell death[J]. Trends in Plant science, 2015,20(11):754-766.
doi: 10.1016/j.tplants.2015.08.002 URL |
[64] |
Gorlach A, Bertram K, Hudecova S, et al. Calcium and ROS:A mutual interplay[J]. Redox Biology, 2015,6:260-271.
doi: 10.1016/j.redox.2015.08.010 URL |
[65] |
Wu J, Sun YF, Zhao YN, et al. Deficient plastidic fatty acid synjournal triggers cell death by modulating mitochondrial reactive oxygen species[J]. Cell Research, 2015,25(5):621-633.
doi: 10.1038/cr.2015.46 URL |
[66] |
Zhao YN, Luo LL, Xu JS, et al. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana[J]. Cell Research, 2018,28(4):448-461.
doi: 10.1038/s41422-018-0024-8 URL |
[67] |
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants.[J]. The New Phytologist, 2019,221:1197-1214.
doi: 10.1111/nph.2019.221.issue-3 URL |
[68] |
Neuser J, Metzen CC, Dreyer BH, et al. HBI1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis.[J]. Cell Reports, 2019,28:1670-1678.
doi: S2211-1247(19)30926-X pmid: 31412238 |
[69] |
Radford JE, White RG. Effects of tissue-preparation-induced callose synjournal on est plasmodesma size exclusion limits[J]. Protoplasma, 2001,216(1-2):47-55.
pmid: 11732196 |
[70] |
Benitez-Alfonso Y, Cilia M, Roman AS, et al. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(9):3615-3620.
doi: 10.1073/pnas.0808717106 pmid: 19218459 |
[71] |
Stonebloom S, Burch-Smith T, Kim I, et al. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(40):17229-17234.
doi: 10.1073/pnas.0909229106 pmid: 19805190 |
[72] |
Liang DC. A salutary role of reactive oxygen species in intercellular tunnel-mediated communication[J]. Frontiers in Cell and Developmental Biology, 2018,6:2.
doi: 10.3389/fcell.2018.00002 URL |
[73] |
Melnyk CW, Molnar A, Baulcombe DC. Intercellular and systemic movement of RNA silencing signals[J]. The EMBO Journal, 2011,30(17):3353-3363.
doi: 10.1038/emboj.2011.241 URL |
[74] | Liang DC, White RG, Waterhouse PM. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide[J]. PerrJ, 2014,2:e701. |
[75] |
Mignolet-Spruyt L, Xu EJ, Idänheimo N, et al. Spreading the news:subcellular and organellar reactive oxygen species production and signaling[J]. Journal of Experimental Botany, 2016,67(13):3831-3844.
doi: 10.1093/jxb/erw080 pmid: 26976816 |
[76] |
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling[J]. Journal of Experimental Botany, 2014,65(5):1229-1240.
doi: 10.1093/jxb/ert375 pmid: 24253197 |
[77] |
Dietz KJ. Thiol-based peroxidases and ascorbate peroxidases:Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?[J]. Molecules and Cells, 2016,39(1):20-25.
doi: 10.14348/molcells.2016.2324 URL |
[78] |
Sewelam N, Kazan K, Schenk PM. Global plant stress signaling:Reactive oxygen species at the Cross-Road[J]. Frontiers in Plant Science, 2016,7:187.
doi: 10.3389/fpls.2016.00187 pmid: 26941757 |
[1] | MA Xue-hu, MA Li-hua, GOU Yan, MA Yan-fen. Related Inflammatory Diseases Caused by Mitochondrial Dysfunction and Targeted Therapy to Them [J]. Biotechnology Bulletin, 2023, 39(6): 119-125. |
[2] | QU Chun-juan, ZHU Yue, JIANG Chen, QU Ming-jing, WANG Xiang-yu, LI Xiao. Whole Mitochondrial Genome and Phylogeny Analysis of Anomala corpulenta [J]. Biotechnology Bulletin, 2023, 39(2): 263-273. |
[3] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
[4] | ZHANG Xiao-ni, WENG Yi-chun, FAN Yi-hao, WANG Xiao-juan, ZHAO Jia-yu, ZHANG Yun-long. Mito-OS-Timer:A Targeted Fluorescent Stopwatch for Monitoring Mitochondrial Oxidative Stress [J]. Biotechnology Bulletin, 2022, 38(10): 97-105. |
[5] | XUE Qing, DU Hong-rui, XUE Hui-ying, WANG Yi-hao, WANG Xuan, LI Hong-mei. Mitochondrial Genome and Phylogeny of Aphelenchoides medicagus [J]. Biotechnology Bulletin, 2021, 37(7): 98-106. |
[6] | YANG Li, WANG Bo, LI Wen-jiao, WANG Xing-jun, ZHAO Shu-zhen. Research Progress on Production,Scavenging and Signal Transduction of ROS Under Drought Stress [J]. Biotechnology Bulletin, 2021, 37(4): 194-203. |
[7] | JI Yi, XU Xiao-li, JIANG Yuan-yuan, WANG Xiao-fu, XU Jun-feng, LI Yue-ying, CHEN Xiao-yun. Copy Number Variations of Mitochondrial DNA and Genomic DNA from Different Tissues of Duck Based on Digital PCR [J]. Biotechnology Bulletin, 2020, 36(5): 86-91. |
[8] | LU Lin, YANG Shang-yu, LIU Wei-dong, LU Li-ming. Mining of Genes Related to Reactive Oxygen Species Scavenging in Response to Salt Stress in Nicotiana alata Based on Transcriptome Sequencing [J]. Biotechnology Bulletin, 2020, 36(12): 42-53. |
[9] | LIU Rong, CUI Kai, BAI Fu-heng, DIAO Qi-yu. Research Progress on Methionine Regulating the Oxidative Stress of Livestock and Poultry [J]. Biotechnology Bulletin, 2020, 36(10): 207-214. |
[10] | LI Qin, ZHANG Lin-lin, HUANG Ying. Research on the Localization and Function of Atp4 in Schizosaccharomyces pombe [J]. Biotechnology Bulletin, 2019, 35(8): 59-63. |
[11] | WEN Yuan, XIA Juan, QI Liang-hua, LIU Xiao-wei, LIU Chen-guang, BAI Feng-wu. Enhanced Furfural Tolerance in Zymomonas mobilis by the Overexpression of Antioxidant Genes [J]. Biotechnology Bulletin, 2019, 35(8): 85-94. |
[12] | XIE Wen-ya, ZOU Shi-ying, Gao Ru-xin, HE Xiao-yun. Research Progress on the Mitochondrial Pyruvate Carrier(MPC) [J]. Biotechnology Bulletin, 2019, 35(7): 196-201. |
[13] | WANG Ping, CONG Ling, WANG Chun-yu, ZHU Zhen-xing, A Ashok KUMAR, ZHANG Li-xia, LU Xiao-chun. Comparison of Mitochondrial Genome Between A1 Cytoplasmic Male Sterile Line and Maintainer Line of Sorghum bicolor [J]. Biotechnology Bulletin, 2019, 35(5): 42-47. |
[14] | WAN Qing-qing, LI Jie, ZENG Yu, ZHANG Ming-ming, ZHAO Xin-qing, BAI Feng-wu. Enhanced Production of Cellobiohydrolase in the Recombinant Saccharomyces cerevisiae by MRP8 Overexpression [J]. Biotechnology Bulletin, 2018, 34(5): 94-100. |
[15] | CHEN Hao-yu, XU Rui-tao, CHENG Zhi-xiang, GAO Qiang, ZHANG Jian. Responses of Asperigillus niger to Oxidative Stress Under H2O2 Exposure [J]. Biotechnology Bulletin, 2018, 34(4): 201-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||