[1] Ruijter JC, Koskela EV, Frey AD.Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum[J]. Microb Cell Fact, 2016, 15(1):87. [2] Davison SA, den Haan R, van Zyl WH. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains[J]. Appl Microb Biotech, 2016, 100(18):8241-54. [3] Liu H, et al.Engineering microbes for direct fermentation of cellulose to bioethnol[J]. Crit Rev Biotech, 2018, 2018:1-17. [4] Zhao XQ, Xiong L, Zhang MM, et al.Towards efficient bioethanol production from agricultural and forestry residues:exploration of unique natural microorganisms in combination with advanced strain engineering[J]. Bioresour Technol, 2016, 215:84-91. [5] den Haan R, van Rensburg E, et al. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing[J]. Curr Opin Biotech, 2015, 33:32-38. [6] Ilmén M, den Haan R, Brevnova E, et al. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae[J]. Biotechnol Biofuels, 2011, 4(1):30. [7] Bao JC, Huang MT, et al.Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae[J]. Appl Environl Microb, 2017, 83(14):e03400-16. [8] Van RE, Den HR, Smith J, et al.The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture[J]. Appl Microb Biotech, 2012, 96(1):197-209. [9] Tyo K E, Liu Z, Petranovic D, et al.Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress[J]. BMC Biology, 2012, 10(1):16. [10] Kroukamp H, den Haan R, et al. Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion[J]. Appl Energ, 2013, 102(2):150-156. [11] Hou J, Österlund T, Liu Z, et al.Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae[J]. Appl Microb Biotech, 2013, 97(8):3559-3568. [12] 万春, 万青青, 等. 过表达MRP8提高酿酒酵母乙酸耐性及乙醇发酵效率[J]. 生物加工过程. 2017, 15(5):80-85. [13] Zhang GC, Kong II, Kim H, et al.Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease[J]. Appl Environ Microbiol, 2014, 80(24):7694-7701. [14] Bai Flagfeldt D, Siewers V, Huang L, et al.Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae[J]. Yeast, 2009, 26(10):545-551. [15] Jensen NB, Strucko T, Kildegaard KR, et al.EasyClone:method for iterative chromosomal integration of multiple genes in Saccharo-myces cerevisiae[J]. FEMS Yeast Res, 2014, 14, 238-248. [16] Gietz RD, Schiestl RH.High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Protoc, 2007, 2 (1):31-34. [17] La Grange DC, Pretorius IS, Claeyssens M, et al.Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae co-expressing the Aspergillus niger β-xylosidase(xlnD)and the Trichoderma reesei xylanase II(Xyn2)genes[J]. Appl Environ Microbiol, 2001, 67(12):5512-5519. [18] Teste MA, Duquenne M, Francois JM, et al.Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae[J]. BMC Mol Biol, 2009, 10(1):99. [19] Ram AFJ, Klis FM.Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red[J]. Nature Protocols, 2006, 1(5):2253. [20] Tan SX, Teo M, Lam YT, et al.Cu, Zn superoxide dismutase and NADP(H)homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2009, 20(5):1493-1508. [21] Tang HT, Bao XM, et al.Engineering protein folding and transloca-tion improves heterologous protein secretion in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2015, 112(9):1872. [22] Tang HT, Song MH, He Y, et al.Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae[J]. Biotechnol Biofuels, 2017, 10(1):53. [23] van Zyl JHD, den Haan R, van Zyl WH. Over-expression of native Saccharomyces cerevisiae exocytic SNARE genes increased heterologous cellulase secretion[J]. Appl Microb Biotech, 2014, 98(12):5567-5578. [24] van Zyl JHD, den Haan R, van Zyl WH. Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion[J]. Appl Microb Biotech, 2016, 100(1):505-518. [25] Boorsma A, Nobel H, Riet B, et al.Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae[J]. Yeast, 2004, 21(5):413-427. [26] Bruckmann A, Hensbergen PJ, Balog CIA, et al.Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells[J]. J Proteomics, 2009, 71(6):662-669. [27] Zhou W, Ryan JJ, Zhou H.Global analyses of sumoylated proteins in Saccharomyces cerevisiae:induction of protein sumoylation by cellular stresses[J]. J Biol Chem, 2004, 279(31):32262-32268. [28] Zhang MM, Zhao XQ, Cheng C, et al.Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1[J]. Biotechnol J, 2015, 10(12):1903-1911. |