Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 141-149.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0418
Previous Articles Next Articles
Received:
2021-03-31
Online:
2022-01-26
Published:
2022-02-22
Contact:
MA Yu-chao
E-mail:sunjingya0303@163.com;mayuchao@bjfu.edu.cn
SUN Jing-ya, MA Yu-chao. Functions of Arsenic-resistant Gene Cluster in Pseudomonas sp. Tw224[J]. Biotechnology Bulletin, 2022, 38(1): 141-149.
质粒和菌株Plasmids and strains | 特性Characteristic | 来源Source | |
---|---|---|---|
质粒 Plasmid | pK18mobsacB | Suicide plasmid vector,KanR | Stored in lab |
pSET152 | Integrativeplasmid vector,Apr | Stored in lab | |
pA18mobsacB | Apr | This study | |
pA18QCA1 | pA18 with a1 up/a1 down,Apr | This study | |
pA18QCA2 | pA18 with a2 up/a2 down,Apr | This study | |
菌株 Strain | Pseudomonas sp. Tw224 | KanR、AmpR | From Hunan,stored in lab |
E. coli S17-1 | KanR | This study | |
E. coli S17-1-QCA1 | E. coli S17-1 with pA18QCA1 | This study | |
E. coli S17-1-QCA2 | E. coli S17-1 with pA18QCA2 | This study | |
Pseudomonas sp. QSA1 | Tw224 ∆ars1 | This study | |
Pseudomonas sp. QSA2 | Tw224 ∆ars2 | This study | |
Pseudomonas sp. QSARS | Tw224 ∆ars1 ars2 | This study |
Table 1 Plasmids and strains in this study
质粒和菌株Plasmids and strains | 特性Characteristic | 来源Source | |
---|---|---|---|
质粒 Plasmid | pK18mobsacB | Suicide plasmid vector,KanR | Stored in lab |
pSET152 | Integrativeplasmid vector,Apr | Stored in lab | |
pA18mobsacB | Apr | This study | |
pA18QCA1 | pA18 with a1 up/a1 down,Apr | This study | |
pA18QCA2 | pA18 with a2 up/a2 down,Apr | This study | |
菌株 Strain | Pseudomonas sp. Tw224 | KanR、AmpR | From Hunan,stored in lab |
E. coli S17-1 | KanR | This study | |
E. coli S17-1-QCA1 | E. coli S17-1 with pA18QCA1 | This study | |
E. coli S17-1-QCA2 | E. coli S17-1 with pA18QCA2 | This study | |
Pseudomonas sp. QSA1 | Tw224 ∆ars1 | This study | |
Pseudomonas sp. QSA2 | Tw224 ∆ars2 | This study | |
Pseudomonas sp. QSARS | Tw224 ∆ars1 ars2 | This study |
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
Apr UP | cgcagctgtgctcgacgtGAAGATCCTTTGATCTTTTC |
Apr DOWN | ttcggcaagcaggcatcgccatgATCAGCCGTCCAAATGC |
MQa1U S | attcgagctcggtacccgggAGGACCAGGCTGAGGACA |
MQa1U A | TATTTGGTAGACCGCTATTCG |
MQa1D S | gaatagcggtctaccaaataCCCAAGCACTTGAAGAATGT |
MQa1D A | taaaacgacggccagtgccaCTGCCGAGCAAAGCGTAT |
NEW2U S | attcgagctcggtacccgggCAGGGACAAGGGAATGACG |
NEW2U A | TTGACGACGGTCCACCAG |
MQa2D S | ctggtggaccgtcgtcaaAGGCGCTGATTCTGTGGG |
MQa2D A | taaaacgacggccagtgccaTCAATGAGGCTGCGGATG |
YZ UP | CCCCAGGCTTTACACTTTATG |
YZ DOWN | TGTGCTGCAAGGCGATTA |
YZA1Y S | ACCGATGTGAGCGAAGCC |
YZA1Y A | CCTCCTGGTCGTTACCCTGT |
YZA2Y S | CAATCAGTTGTGGCGGTTTC |
YZA2Y A | CATGCTCAGCTCCTTTCGA |
Table 2 Primers in this study
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
Apr UP | cgcagctgtgctcgacgtGAAGATCCTTTGATCTTTTC |
Apr DOWN | ttcggcaagcaggcatcgccatgATCAGCCGTCCAAATGC |
MQa1U S | attcgagctcggtacccgggAGGACCAGGCTGAGGACA |
MQa1U A | TATTTGGTAGACCGCTATTCG |
MQa1D S | gaatagcggtctaccaaataCCCAAGCACTTGAAGAATGT |
MQa1D A | taaaacgacggccagtgccaCTGCCGAGCAAAGCGTAT |
NEW2U S | attcgagctcggtacccgggCAGGGACAAGGGAATGACG |
NEW2U A | TTGACGACGGTCCACCAG |
MQa2D S | ctggtggaccgtcgtcaaAGGCGCTGATTCTGTGGG |
MQa2D A | taaaacgacggccagtgccaTCAATGAGGCTGCGGATG |
YZ UP | CCCCAGGCTTTACACTTTATG |
YZ DOWN | TGTGCTGCAAGGCGATTA |
YZA1Y S | ACCGATGTGAGCGAAGCC |
YZA1Y A | CCTCCTGGTCGTTACCCTGT |
YZA2Y S | CAATCAGTTGTGGCGGTTTC |
YZA2Y A | CATGCTCAGCTCCTTTCGA |
菌株Strain | 最低抑菌浓度MIC /(mmol·L-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As5+ | As3+ | Cr3+ | Ag3+ | Cd2+ | Co2+ | Ni2+ | Hg2+ | Zn2+ | Cu2+ | ||
Tw224 | 600 | 20 | 5 | 3 | 2 | 3 | 12 | 3 | 12 | 20 |
Table 3 MIC to 8 heavy metals of Pseudomonas sp. Tw224
菌株Strain | 最低抑菌浓度MIC /(mmol·L-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As5+ | As3+ | Cr3+ | Ag3+ | Cd2+ | Co2+ | Ni2+ | Hg2+ | Zn2+ | Cu2+ | ||
Tw224 | 600 | 20 | 5 | 3 | 2 | 3 | 12 | 3 | 12 | 20 |
[1] |
Mandal BK, Suzuki KT. Arsenic round the world:a review[J]. Talanta, 2002, 58(1):201-235.
pmid: 18968746 |
[2] |
Zhu YG, Yoshinaga M, et al. Earth abides arsenic biotransformations[J]. Annu Rev Earth Planet Sci, 2014, 42(1):443-467.
doi: 10.1146/earth.2014.42.issue-1 URL |
[3] |
Mestrot A, Feldmann J, Krupp EM, et al. Field fluxes and speciation of arsines emanating from soils[J]. Environ Sci Technol, 2011, 45(5):1798-1804.
doi: 10.1021/es103463d pmid: 21284382 |
[4] |
Cavalca L, Corsini A, Zaccheo P, et al. Microbial transformations of arsenic:perspectives for biological removal of arsenic from water[J]. Future Microbiol, 2013, 8(6):753-768.
doi: 10.2217/fmb.13.38 pmid: 23586329 |
[5] |
Sousa T, Branco R, Piedade AP, et al. Hyper accumulation of arsenic in mutants of Ochrobactrum tritici silenced for arsenite efflux pumps[J]. PLoS One, 2015, 10(7):e0131317.
doi: 10.1371/journal.pone.0131317 URL |
[6] |
Huang H, Jia Y, Sun GX, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environ Sci Technol, 2012, 46(4):2163-2168.
doi: 10.1021/es203635s pmid: 22295880 |
[7] |
Li J, Pawitwar SS, Rosen BP. The organoarsenical biocycle and the primordial antibiotic methylarsenite[J]. Metallomics, 2016, 8(10):1047-1055.
doi: 10.1039/C6MT00168H URL |
[8] |
Cai L, Liu G, Rensing C, et al. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils[J]. BMC Microbiol, 2009, 9:4.
doi: 10.1186/1471-2180-9-4 URL |
[9] | Yang HC, Fu HL, Lin YF, et al. Pathways of arsenic uptake and efflux[J]. Curr Top Membr, 2012, 69:325-358. |
[10] | 陈倩, 苏建强, 等. 微生物砷还原机制的研究进展[J]. 生态毒理学报, 2011, 6(3):225-233. |
Chen Q, Su JQ, et al. Advances in mechanisms of microbial arsenate reduction[J]. Asian J Ecotoxicol, 2011, 6(3):225-233. | |
[11] |
Páez-Espino AD, Nikel PI, Chavarría M, et al. ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic[J]. Environ Microbiol, 2020, 22(6):2230-2242.
doi: 10.1111/1462-2920.14991 pmid: 32202357 |
[12] |
Wu D, Zhang Z, Gao Q, et al. Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in Southern China[J]. World J Microbiol Biotechnol, 2018, 34(12):177.
doi: 10.1007/s11274-018-2557-x URL |
[13] | 吕常江, 赵春贵, 杨素萍, 等. 紫色非硫细菌的砷代谢机制[J]. 微生物学报, 2012, 52(12):1497-1507. |
Lv CJ, Zhao CG, Yang SP, et al. Arsenic metabolism in purple nonsulfur bacteria[J]. Acta Microbiol Sin, 2012, 52(12):1497-1507. | |
[14] |
Chong TM, Yin WF, et al. Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13. 1. 2 isolated from a vineyard soil[J]. AMB Express, 2016, 6(1):95.
doi: 10.1186/s13568-016-0269-x pmid: 27730570 |
[15] |
Páez-Espino AD, Durante-Rodríguez G, de Lorenzo V. Functional coexistence of twin arsenic resistance systems in Pseudomonas putida KT2440[J]. Environ Microbiol, 2015, 17(1):229-238.
doi: 10.1111/1462-2920.12464 pmid: 24673935 |
[16] |
Koechler S, Arsène-Ploetze F, Brochier-Armanet C, et al. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11[J]. Res Microbiol, 2015, 166(3):205-214.
doi: 10.1016/j.resmic.2015.02.010 URL |
[17] |
He M, Li X, Guo L, et al. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1[J]. BMC Microbiol, 2010, 10:221.
doi: 10.1186/1471-2180-10-221 URL |
[18] | 车媛媛. 嗜铁钩端螺旋菌抗砷基因簇的生物信息学分析及改造[D]. 济南:山东大学, 2010. |
Che YY. Bioinformatics analysis and mutation of Leptospirillum ferriphilum arsenic resistance system(ARS)cluster[D]. Jinan:Shandong University, 2010. | |
[19] |
Chivers PT, Sauer RT. Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites[J]. J Biol Chem, 2000, 275(26):19735-19741.
pmid: 10787413 |
[20] |
Xie P, Hao XL, Herzberg M, et al. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China[J]. J Environ Sci, 2015, 27:179-187.
doi: 10.1016/j.jes.2014.07.017 URL |
[21] |
Nies DH. Heavy metal-resistant bacteria as extremophiles:molecular physiology and biotechnological use of Ralstonia sp. CH34[J]. Extremophiles, 2000, 4(2):77-82.
pmid: 10805561 |
[22] |
Liu P, Chen X, Huang Q, et al. The role of CzcRS two-component systems in the heavy metal resistance of Pseudomonas putida X4[J]. Int J Mol Sci, 2015, 16(8):17005-17017.
doi: 10.3390/ijms160817005 URL |
[23] |
Serrato-Gamiño N, Salgado-Lora MG, Chávez-Moctezuma MP, et al. Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400[J]. World J Microbiol Biotechnol, 2018, 34(10):1-10.
doi: 10.1007/s11274-017-2385-4 URL |
[24] |
Cai L, Rensing C, Li XY, et al. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers:Achromobacter sp. SY8 and Pseudomonas sp. TS44[J]. Appl Microbiol Biotechnol, 2009, 83(4):715-725.
doi: 10.1007/s00253-009-1929-4 URL |
[1] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[2] | LI Hui-jie, DONG Lian-hua, CHEN Gui-fang, LIU Si-yuan, YANG Jia-yi, YANG Jing-ya. Establishment of Droplet Digital PCR Assay for Quantitative Detection of Pseudomonas cocovenenans in Foods [J]. Biotechnology Bulletin, 2023, 39(1): 127-136. |
[3] | HE Li-na, FENG Yuan, SHI Hui-min, YE Jian-ren. Screening and Identification of Endophytic Bacteria with Nematicidal Activity Against Bursaphelenchus xylophilus in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(8): 159-166. |
[4] | FU Ya-li, PENG Wan-li, LIN Shuang-jun, DENG Zi-xin, LIANG Ru-bing. Gene Cloning and Enzymatic Properties of the Short Chain Dehydrogenase SDR-X1 from Pseudomonas citronellolis SJTE-3 [J]. Biotechnology Bulletin, 2022, 38(3): 121-129. |
[5] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[6] | HU Shan, LIANG Wei-qu, HUANG Hao, XU Cong, LUO Hua-jian, HU Chu-wei, HUANG Xiao-yan, CHEN Shi-li. Screening,Identification and Antagonism of Phosphate-Solubilizing Bacteria from the Compost Chinese Medicinal Herbal Residues [J]. Biotechnology Bulletin, 2022, 38(3): 92-102. |
[7] | ZHAO Yang, SUN Hui-ming, LIN Hao-peng, LUO Ping-ting, ZHU Ya-ting, CHEN Qiong-hua, SHU Hu. Biosafety and Nitrogen Removal Performance of a Safe and Efficient Aerobic Denitrifying Pseudomonas stutzeri DZ11 [J]. Biotechnology Bulletin, 2022, 38(10): 226-234. |
[8] | WANG Hai-jie, WANG Cheng-ji, GUO Yang, WANG Yun, CHEN Yan-juan, LIANG Min, WANG Jue, GONG Hui, SHEN Ru-ling. Construction of Coagulation Factor 8 Gene Knockout Mouse Model Based on CRSIPR/Cas9 Technique and Verification of Phenotype [J]. Biotechnology Bulletin, 2022, 38(10): 273-280. |
[9] | WANG Rui, HAN Lie-bao. Generation of bdfls2-knockout Mutant in Brachypodium distachyon Mediated by CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(1): 70-76. |
[10] | HONG Jun, WEI Xia-yi, JI Bing-jie, YE Yan-xin, CHENG Tian-ci. Change of Differentially Expressed Genes and SNP Before or After Pseudomonas aeruginosa Resistance to Tachyplesin I [J]. Biotechnology Bulletin, 2021, 37(9): 191-202. |
[11] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[12] | JIANG Cheng-hui, ZENG Qiao-ying, WANG Meng, PAN Yang-yang, LIU Xu-ming, SHANG Tian-tian. Construction of srtA-Knockout Strain in Staphylococcus aureus by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2020, 36(9): 253-265. |
[13] | WANG Song, LI Peng-cheng, BAI Chao-hui, XU Hong-xin, YING Yan-min, ZHANG Mo, BAI Yi-chun. Generation of Stable α-ENaC Knockout Rat L2 Cell Strains by CRISPR/Cas9 [J]. Biotechnology Bulletin, 2020, 36(3): 115-123. |
[14] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[15] | QIAN Wen-jiang, WANG Bu-qing, LI Wei-xi, YANG Xue-miao, LIU Hong-wei, ZHANG Li-ping. Secondary Metabolic Pathway Mining and Pan-genome Analysis of Bacillus coagulans [J]. Biotechnology Bulletin, 2020, 36(10): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||