Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (10): 195-203.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1595
Previous Articles Next Articles
LI Ting-ting(), DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan(), LI Rong, SHEN Qi-rong
Received:
2021-12-25
Online:
2022-10-26
Published:
2022-11-11
Contact:
SHEN Zong-zhuan
E-mail:2020103118@stu.njau.edu.cn;shenzongz@njau.edu.cn
LI Ting-ting, DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan, LI Rong, SHEN Qi-rong. Effects of Ralstonia solanacearum Infection on Soil Fungal Community Diversity[J]. Biotechnology Bulletin, 2022, 38(10): 195-203.
Fig.1 Fungal abundance in bulk and rhizosphere soils cropped with diseased and non-diseased tomato BD:Diseased tomato bulk soil;BH:non-diseased tomato bulk soil;RD:diseased tomato rhizosphere soil;RH:non-diseased tomato rhizosphere soil. ***,**,and * indicate that there are significant differences between the treatments at the levels of P <0.001,P <0.01,and P <0.05. The same below
Fig.4 Relative abundances of dominated orders for fungal communities in the bulk(a)and rhizosphere soils crop-ped with diseased and non-diseased tomato(b)
Fig.5 Venn plot of fungal composition (a) and relative abu-ndances heatmap (b) of partial dominated genera for fungal communities in the bulk and rhizosphere soils cropped with diseased and non-diseased tomato The colors in the heat map cell indicate the relative abundances of the genera in the soil. The clustering of the heat map is based on the relative abundances of the genera in each sample
Fig. 6 Volcano plot of fungal OTUs in the bulk(a)and rhizosphere soils(b)cropped with diseased and non-diseased soils tomato The gray dot in the figure indicates that the OTU has no significant difference between the diseased and non-diseased treatments. The red dot indicates that the OTU significantly increased in the diseased treatment,and the blue dot indicates that the OTU significantly reduced in the diseased treatment
[1] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
Jiang J, Song MH. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chin J Plant Ecol, 2010, 34(8):979-988.
doi: 10.3773/j.issn.1005-264x.2010.08.011 |
|
[2] |
Atkinson D, Watson CA. The Beneficial Rhizosphere:a dynamic entity[J]. Appl Soil Ecol, 2000, 15(2):99-104.
doi: 10.1016/S0929-1393(00)00084-6 URL |
[3] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[4] | Flint ML, Dreistadt SH. Natural enemies handbook:the illustrated guide to biological pest control[M]. California: University of California Press, 1998. |
[5] |
Bonilla N, Cazorla FM, Martínez-Alonso M, et al. Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils[J]. Plant Soil, 2012, 357(1/2):215-226.
doi: 10.1007/s11104-012-1155-1 URL |
[6] |
Zhao S, Chen X, Deng SP, et al. The effects of fungicide, soil fumigant, bio-organic fertilizer and their combined application on Chrysanthemum Fusarium wilt controlling, soil enzyme activities and microbial properties[J]. Molecules, 2016, 21(4):526.
doi: 10.3390/molecules21040526 URL |
[7] |
Yao HY, Jiao XD, Wu FZ. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity[J]. Plant Soil, 2006, 284(1/2):195-203.
doi: 10.1007/s11104-006-0023-2 URL |
[8] | 耿士均, 刘刊, 商海燕, 等. 园艺作物连作障碍的研究进展[J]. 北方园艺, 2012(7):190-195. |
Geng SJ, Liu K, Shang HY, et al. Research progress of continuous cropping obstacle in horticultural plants[J]. North Hortic, 2012(7):190-195. | |
[9] | 张瑞福, 沈其荣. 抑病型土壤的微生物区系特征及调控[J]. 南京农业大学学报, 2012, 35(5):125-132. |
Zhang RF, Shen QR. Characterization of the microbial flora and management to induce the disease suppressive soil[J]. J Nanjing Agric Univ, 2012, 35(5):125-132. | |
[10] |
Ventura W, Watanabe I. Growth inhibition due to continuous cropping of dryland rice and other crops[J]. Soil Sci Plant Nutr, 1978, 24(3):375-389.
doi: 10.1080/00380768.1978.10433117 URL |
[11] | Sun YY, Jiang GY, Wei XC, et al. Autotoxicity effects of soils continuously cropped with tomato[J]. Allelopathy J, 2011, 28(2):135-144. |
[12] | 马宁宁, 李天来. 设施番茄长期连作土壤微生物群落结构及多样性分析[J]. 园艺学报, 2013, 40(2):255-264. |
Ma NN, Li TL. Effect of long-term continuous cropping of protected tomato on soil microbial community structure and diversity[J]. Acta Hortic Sin, 2013, 40(2):255-264. | |
[13] | 康亚龙, 景峰, 孙文庆, 等. 加工番茄连作对土壤理化性状及微生物量的影响[J]. 土壤学报, 2016, 53(2):533-542. |
Kang YL, Jing F, Sun WQ, et al. Effects of continuous cropping of processing tomato on physical-chemical properties of and microbial biomass in the soil[J]. Acta Pedol Sin, 2016, 53(2):533-542. | |
[14] |
Buddenhagen I, Kelman A. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum[J]. Annu Rev Phytopathol, 1964, 2:203-230.
doi: 10.1146/annurev.py.02.090164.001223 URL |
[15] |
Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex[J]. Annu Rev Phytopathol, 2012, 50:67-89.
doi: 10.1146/annurev-phyto-081211-173000 URL |
[16] |
Salanoubat M, Genin S, Artiguenave F, et al. Genome sequence of the plant pathogen Ralstonia solanacearum[J]. Nature, 2002, 415(6871):497-502.
doi: 10.1038/415497a URL |
[17] |
Wei Z, Yang TJ, Friman VP, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nat Commun, 2015, 6:8413.
doi: 10.1038/ncomms9413 pmid: 26400552 |
[18] |
Deng XH, Zhang N, Shen ZZ, et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease[J]. Appl Soil Ecol, 2020, 147:103364.
doi: 10.1016/j.apsoil.2019.103364 URL |
[19] |
Wang XF, Wei Z, Yang KM, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nat Biotechnol, 2019, 37(12):1513-1520.
doi: 10.1038/s41587-019-0328-3 pmid: 31792408 |
[20] |
Xiong W, Song YQ, Yang KM, et al. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):27.
doi: 10.1186/s40168-020-00799-9 pmid: 32127034 |
[21] |
Liu T, Chen XY, Hu F, et al. Carbon-rich organic fertilizers to increase soil biodiversity:evidence from a meta-analysis of nematode communities[J]. Agric Ecosyst Environ, 2016, 232:199-207.
doi: 10.1016/j.agee.2016.07.015 URL |
[22] | 沈宗专, 黄炎, 操一凡, 等. 健康与罹患青枯病的番茄土壤细菌群落特征比较[J]. 土壤, 2021, 53(1):5-12. |
Shen ZZ, Huang Y, Cao YF, et al. Comparison of bacterial communities in bulk and rhizosphere soils of healthy and diseased tomato infected by bacterial wilt[J]. Soils, 2021, 53(1):5-12. | |
[23] |
Hu QL, Tan L, Gu SS, et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. NPJ Biofilms Microbiomes, 2020, 6(1):8.
doi: 10.1038/s41522-020-0117-2 URL |
[24] |
Odelade KA, Babalola OO. Bacteria, fungi and Archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity[J]. Int J Environ Res Public Health, 2019, 16(20):3873.
doi: 10.3390/ijerph16203873 URL |
[25] |
Lazcano C, Boyd E, Holmes G, et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions[J]. Sci Rep, 2021, 11(1):3188.
doi: 10.1038/s41598-021-82768-2 pmid: 33542451 |
[26] |
Deveau A, Bonito G, Uehling J, et al. Bacterial-fungal interactions:ecology, mechanisms and challenges[J]. FEMS Microbiol Rev, 2018, 42(3):335-352.
doi: 10.1093/femsre/fuy008 URL |
[27] |
Shen ZZ, Penton CR, Lv NN, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microb Ecol, 2018, 75(3):739-750.
doi: 10.1007/s00248-017-1052-5 URL |
[28] |
Zhou X, Wang JT, Wang WH, et al. Changes in bacterial and fungal microbiomes associated with tomatoes of healthy and infected by Fusarium oxysporum f. sp. lycopersici[J]. Microb Ecol, 2021, 81(4):1004-1017.
doi: 10.1007/s00248-020-01535-4 URL |
[29] |
Wang R, Zhang HC, Sun LG, et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Sci Rep, 2017, 7(1):343.
doi: 10.1038/s41598-017-00472-6 pmid: 28336973 |
[30] |
Fierer N, Jackson JA, Vilgalys R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Appl Environ Microbiol, 2005, 71(7):4117-4120.
doi: 10.1128/AEM.71.7.4117-4120.2005 URL |
[31] |
Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J]. Appl Environ Microbiol, 2013, 79(17):5112-5120.
doi: 10.1128/AEM.01043-13 URL |
[32] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[33] |
Wang Q, Garrity GM, Tiedje JM, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16):5261-5267.
doi: 10.1128/AEM.00062-07 URL |
[34] |
Lynch JM. The rhizosphere—form and function[J]. Appl Soil Ecol, 1994, 1(3):193-198.
doi: 10.1016/0929-1393(94)90010-8 URL |
[35] |
Chang JJ, Sun Y, Tian L, et al. The structure of rhizosphere fungal communities of wild and domesticated rice:changes in diversity and co-occurrence patterns[J]. Front Microbiol, 2021, 12:610823.
doi: 10.3389/fmicb.2021.610823 URL |
[36] |
刘洪, 董元华, 申民翀, 等. 番茄青枯病抑病土壤根际微生物群落特征及其抑制性传递机制[J]. 土壤学报, 2021. DOI:10.11766/trxb202101200037.
doi: 10.11766/trxb202101200037 |
Liu H, Dong YH, Shen MC, et al. Characteristics of tomato bacterial wilt disease-suppressive soil rhizosphere microbial community and its inhibitory transmission mechanism[J]. Acta Pedologica Sinica, 2021. DOI:10.11766/trxb202101200037.
doi: 10.11766/trxb202101200037 |
|
[37] |
李玉娇, 刘星, 吴大付, 等. 温室黄瓜连作对土壤真菌数量和群落结构的影响[J]. 华北农学报, 2020, 35(1):194-204.
doi: 10.7668/hbnxb.20190712 |
Li YJ, Liu X, Wu DF, et al. Effects of continuous cropping of greenhouse cucumber on soil fungal abundance and community structure Province[J]. Acta Agric Boreali Sin, 2020, 35(1):194-204. | |
[38] |
Garrido-Jurado I, Fernández-Bravo M, Campos C, et al. Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems[J]. J Invertebr Pathol, 2015, 130:97-106.
doi: 10.1016/j.jip.2015.06.001 pmid: 26146223 |
[39] | Liu LL, Huang XQ, Zhao J, et al. Characterizing the key agents in a disease-suppressed soil managed by reductive soil disinfestation[J]. Appl Environ Microbiol, 2019, 85(7):e02992-e02918. |
[40] |
Zhang J, Yang ZQ, Liang Y, et al. Four new C9 metabolites from the sponge-associated fungus Gliomastix sp. ZSDS1-F7-2[J]. Mar Drugs, 2018, 16(7):231.
doi: 10.3390/md16070231 URL |
[41] |
Li F, Chen L, Redmile-Gordon M, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degrad Dev, 2018, 29(6):1642-1651.
doi: 10.1002/ldr.2965 URL |
[42] |
Xiong W, Li R, Ren Y, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of Vanilla Fusarium wilt disease[J]. Soil Biol Biochem, 2017, 107:198-207.
doi: 10.1016/j.soilbio.2017.01.010 URL |
[43] |
Assress HA, Selvarajan R, Nyoni H, et al. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants[J]. Sci Rep, 2019, 9(1):14056.
doi: 10.1038/s41598-019-50624-z pmid: 31575971 |
[44] |
Rabea EI, Badawy MET, Stevens CV, et al. Chitosan as antimicrobial agent:applications and mode of action[J]. Biomacromolecules, 2003, 4(6):1457-1465.
doi: 10.1021/bm034130m URL |
[45] |
Cai F, Yu GH, Wang P, et al. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum[J]. Plant Physiol Biochem, 2013, 73:106-113.
doi: 10.1016/j.plaphy.2013.08.011 URL |
[46] |
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma—a genomic perspective[J]. Microbiology, 2012, 158(Pt 1):35-45.
doi: 10.1099/mic.0.053629-0 pmid: 21998165 |
[47] |
Adnan M, Islam W, Shabbir A, et al. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus[J]. Microb Pathog, 2019, 129:7-18.
doi: 10.1016/j.micpath.2019.01.042 URL |
[48] | 乔帆, 陈汉清, 李恒, 等. 与尖孢镰刀菌枯萎病相关的抑病型土壤研究进展[J]. 热带作物学报, 2019, 40(8):1665-1670. |
Qiao F, Chen HQ, Li H, et al. Advances in research on disease suppressive soils related to Fusarium oxysporum wilt[J]. Chin J Trop Crops, 2019, 40(8):1665-1670. | |
[49] |
Takken F, Rep M. The arms race between tomato and Fusarium oxysporum[J]. Mol Plant Pathol, 2010, 11(2):309-314.
doi: 10.1111/j.1364-3703.2009.00605.x pmid: 20447279 |
[50] | Jacobs JM, Babujee L, Meng FH, et al. The in planta transcriptome of Ralstonia solanacearum:conserved physiological and virulence strategies during bacterial wilt of tomato[J]. mBio, 2012, 3(4):e00114-e00112. |
[51] |
Siddiqui ZA, Futai K. Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth-promoting rhizobacteria and cattle manure[J]. Pest Manag Sci, 2009, 65(9):943-948.
doi: 10.1002/ps.1777 pmid: 19431151 |
[52] |
Dita M, Barquero M, Heck D, et al. Fusarium wilt of banana:current knowledge on epidemiology and research needs toward sustainable disease management[J]. Front Plant Sci, 2018, 9:1468.
doi: 10.3389/fpls.2018.01468 URL |
[53] | 赖朝圆. 轮作缓解香蕉连作生物障碍的效应及机制研究[D]. 海口: 海南大学, 2018. |
Lai CY. Research on the effect and mechanism of relieve banana continuous cropping obstacles by crop rotation[D]. Haikou: Hainan University, 2018. | |
[54] |
Liu HJ, Xiong W, Zhang RF, et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant Soil, 2018, 423(1/2):229-240.
doi: 10.1007/s11104-017-3504-6 URL |
[55] |
Deng XH, Zhang N, Shen ZZ, et al. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum[J]. NPJ Biofilms Microbiomes, 2021, 7(1):33.
doi: 10.1038/s41522-021-00204-9 URL |
[56] |
Cheng HY, Zhang DQ, Ren LR, et al. Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield[J]. Environ Pollut, 2021, 283:117160.
doi: 10.1016/j.envpol.2021.117160 URL |
[1] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[2] | ZHANG Shi-wei, CHEN Xi, ZHONG Qi-ding, HUANG Zhan-bin, MENG Zhen, LUO Jin-xue, SHI Ling, BAI Zhi-hui. Microbial Communities on the Wine Grape Surfaces of Different Cultivars [J]. Biotechnology Bulletin, 2017, 33(3): 128-137. |
[3] | WANG Yan-yun GUO Du-fa. The Application of 454 High-throughput Sequencing Technology into Anlaysing the Diversity of Soil Fungi in the Field Planting Tamarix chinensis and Angiospermae [J]. Biotechnology Bulletin, 2016, 32(7): 48-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||