Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 88-99.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1525
Previous Articles Next Articles
YIPARE·Paerhati (), ZULIHUMAER·Rouzi , TIAN Yong-zhi, ZHU Yan-lei, LI Yuan-ting, MA Xiao-lin()
Received:
2021-12-08
Online:
2022-12-26
Published:
2022-12-29
Contact:
MA Xiao-lin
E-mail:627428492@qq.com;xiaolin@xjnu.edu.cn
YIPARE·Paerhati , ZULIHUMAER·Rouzi , TIAN Yong-zhi, ZHU Yan-lei, LI Yuan-ting, MA Xiao-lin. Research Progress in Diversity of Endophytes Microbial Communities Isolated from Desert Plants and Their Strengthening Effects on Drought and Salt Tolerance in Crops[J]. Biotechnology Bulletin, 2022, 38(12): 88-99.
序号No. | 促生功能Function of growth promoting | 内生菌Endophyte | 参与调控的物质Substances involved in regulation | 植物来源Plant origin | 参考文献Reference | |||
---|---|---|---|---|---|---|---|---|
代谢产物Metabolite | 植物类激素Phytohormone | 酶类Enzymes | 渗透势物质Osmotic potential material | |||||
1 | 增加根长,茎长Increase root length and stem length | 短小芽孢杆、克雷伯氏菌 B. pumilus,Klebsiella sp. | 总黄酮,总多糖,总皂苷,亚精胺Total flavonoids,total polysaccharides,total saponins,and spermidine | 吲哚乙酸 IAA | 过氧化氢酶、谷胱甘肽过氧化物酶CAT and GPX | 甘草、阿尔哈吉Glycyrrhiza uralensis,and Fisch Alhagi sparsifolia | [ | |
2 | 增加生物量Increase biomass | 不等弯孢、镰刀、新孢子菌、格孢腔菌、单格孢菌、奇氏新孢霉、新卡玛孢菌 Curvularia inaequali,Fusariumavenaceum,Neocamarosporium sp.,Pleosporales,Ulocladium sp.,Neocamarosporium chichastianum,and Neocamarosporium goegapense | 过氧化物酶、苯丙氨酸解氨酶、过氧化氢酶POD,PAL,and CAT | 可溶性糖,脯氨酸 Soluble sugar and proline | 桑托林丝兰、沙棘、盐地碱蓬、小叶罗汉果,迷迭香、鹰嘴豆、梭梭Ceratocarpus arenarius,Seriphidium santolinum,Suaeda salsa,Eragrostis minor,Seidlitzia rosmarinus,Chick peas,and Sacsaoul | [ | ||
3 | 固氮 Fix nitrogen | 克雷伯氏菌、解磷细菌、芸苔假单胞菌 Klebsiella sp.,Pseudomonas frederickbergensis,and Pseudomonas brassicacearum | 亚精胺,胞外多糖Spermidine and exopolysaccharides | 吲哚乙酸 IAA | ACC脱氨酶、固氮酶ACC deaminase,and nitrogenase | 阿尔哈吉、椰枣、黑果枸杞、多枝柽柳Alhagi sparsifolia,Phoenix dactylifera L.,Lycium ruthenicum,and Tamarix ramosissima | [ | |
4 | 增加鲜重、干重Increase fresh and dry weight | 嗜热真菌、克雷伯氏菌 Thermomyces lanuginosus,Klebsiella sp. | 总多糖,总黄酮和抗坏血酸,亚精胺Total polysaccharides,total flavonoids,ascorbic acid,and spermidine | 吲哚乙酸 IAA | 苯丙氨酸解氨酶、过氧化氢酶、过氧化物酶PAL,CAT,and POD | 皱襞植物、阿尔哈吉Cullen plicata Delile,and Alhagi sparsifolia | [ | |
5 | 增加根重,茎重Increase root weight and stem weight | 短芽孢杆菌属、解磷细菌、芸苔假单胞菌 Brevibacillus sp.,Pseudomonas frederickbergensis,and Pseudomonas brassicacearum | 胞外多糖Exopolysaccharides | 吲哚乙酸 IAA | 纤维素酶、果胶酶、ACC脱氨酶Cellulase,pectase,and ACC deaminase | 翅果油树、桂花、椰枣Fagonia mollis Delile,Achillea fragrantissima(Forssk)Sch. Bip.,and Phoenix dactylifera L. | [ | |
6 | 增加叶片叶绿素浓度,提高光合作用Increase leaf chlorophyll concentration and improve photosynthesis | 奇氏新孢霉、新卡玛孢菌、巨大芽孢杆菌、解淀粉芽孢杆菌、阴沟肠杆菌、肺炎克雷伯菌 Neocamarosporium chichastianum,Neocamarosporium goegapense,Periconia macrospinosa,Bacillus megaterium,B.amylolique faciens,Enterobacter cloacae,and Klebsiella pneumoniae | 胞外多糖Exopolysaccharides | 苯丙氨酸解氨酶、过氧化氢酶、过氧化物酶、抗坏血酸过氧化物酶、谷胱甘肽过氧化物酶、超氧化歧化酶PAL,CAT,POD,APX,GPX,and SOD | 脯氨酸Proline | 迷迭香、鹰嘴豆、梭梭、仙人掌Seidlitzia rosmarinus,Chick peas,Sacsaoul,and Euphorbia trigonas | [ | |
7 | 提高种子萌发率Improve seed germination rate | 芽孢杆菌、葡萄球菌属、假单孢菌属、地衣芽孢杆菌、莫哈韦芽孢杆菌、枯草芽孢杆菌 Bacillus,Staphylococcus,Pseudomonas,B. licheniformis,B. mojavensi,and B. subtilis | 吲哚乙酸 IAA | 脯氨酸Proline | 银砂槐、抱茎独行菜Ammodendron bifolium,and Lepidium perfoliatum L. | [ | ||
8 | 提高植株磷、氮的含量Increase plant phosphorus and nitrogen content | 短芽孢杆菌属 Brevibacillus sp | 吲哚乙酸 IAA | 纤维素酶、果胶酶、ACC脱氨酶Cellulase,pectase,and ACC deaminase | 翅果油树、桂花、椰枣Fagonia mollis Delile,Achillea fragrantissima(Forssk)Sch. Bip.,and Phoenix dactylifera L. | [ | ||
9 | 促进植物生长Promote plant growth | 泛菌属、深色有隔内生菌、芽孢杆菌(pantoea)的Pantoea alhagi sp.nov,Dark septate endophytes,Bacillus | 铁载体,胞外多糖,氨,糖原,蛋白质,多聚磷酸盐,磷Siderophores,exopolysaccharides, ammonia,glycogen,protein,polyphosphate,and phosphorus | 吲哚乙酸 IAA | 蛋白酶、纤维素酶,果胶酶、木聚糖酶Protease,cellulase,and pectase,pentopan mono | 可溶性糖、丙二醛、脯氨酸、钙、钾Soluble sugar, malondiald- ehyde,proline,calcium,and kalium | 骆驼刺、裸果木、紫茎泽兰Alhagi sparsifolia Shap,Gymnocarpos przewalskii,and Teucrium polium | [ |
10 | 提高抗干旱能力Improve drought resistance | 芽孢杆菌、葡萄球菌属、假单孢菌属、泛菌属、深色有隔内生菌、巨大芽孢杆菌、解淀粉芽孢杆菌、阴沟肠杆菌、肺炎克雷伯菌(Bacillus,Staphylococcus,Pseudomonas,pantoea)的Pantoea alhagi sp.nov,Dark septate endophytes,Bacillus megaterium,B.amylolique faciens,Enterobacter cloacae,Klebsiella pneumoniae | 铁载体,胞外多糖,氨,糖原,蛋白质,多聚磷酸盐,磷 Siderophores,exopolysaccharides, ammonia,glycogen,protein,polyphosphate,and phosphorus | 吲哚乙酸 IAA | 蛋白酶、抗坏血酸过氧化物酶、谷胱甘肽过氧化物酶、过氧化氢酶、超氧化歧化酶Protease,APX,GPX,CAT,and SOD | 脯氨酸 Proline | 银砂槐、裸果木、骆驼刺、仙人掌Ammodendron bifolium,Gymnocarpos przewalskii,Alhagi sparsifolia Shap,and Euphorbia trigonas | [ |
11 | 溶磷 Solve phosphorus | 解磷细菌、芸苔假单胞菌、克雷伯菌 Pseudomonas frederickbergensis,Pseudomonas brassicacearum,Klebsiella | 胞外多糖Exopolysaccharides | 吲哚乙酸 IAA | ACC脱氨酶、固氮酶ACC deaminase,and nitrogenase | 椰枣、黑果枸杞、多枝柽柳Phoenix dactylifera L.,Lycium ruthenicum,and Tamarix ramosissima | [ | |
12 | 形成生物膜 Form biofilms | 地衣芽孢杆菌、莫哈韦芽孢杆菌、 枯草芽孢杆菌 B.licheniformis,B.mojavensi,B.subtilis | 抱茎独行菜Lepidium perfoliatum L. | [ |
Table1 Growth promoting function of endophytes on host of desert plant and their target substances involved in regulation
序号No. | 促生功能Function of growth promoting | 内生菌Endophyte | 参与调控的物质Substances involved in regulation | 植物来源Plant origin | 参考文献Reference | |||
---|---|---|---|---|---|---|---|---|
代谢产物Metabolite | 植物类激素Phytohormone | 酶类Enzymes | 渗透势物质Osmotic potential material | |||||
1 | 增加根长,茎长Increase root length and stem length | 短小芽孢杆、克雷伯氏菌 B. pumilus,Klebsiella sp. | 总黄酮,总多糖,总皂苷,亚精胺Total flavonoids,total polysaccharides,total saponins,and spermidine | 吲哚乙酸 IAA | 过氧化氢酶、谷胱甘肽过氧化物酶CAT and GPX | 甘草、阿尔哈吉Glycyrrhiza uralensis,and Fisch Alhagi sparsifolia | [ | |
2 | 增加生物量Increase biomass | 不等弯孢、镰刀、新孢子菌、格孢腔菌、单格孢菌、奇氏新孢霉、新卡玛孢菌 Curvularia inaequali,Fusariumavenaceum,Neocamarosporium sp.,Pleosporales,Ulocladium sp.,Neocamarosporium chichastianum,and Neocamarosporium goegapense | 过氧化物酶、苯丙氨酸解氨酶、过氧化氢酶POD,PAL,and CAT | 可溶性糖,脯氨酸 Soluble sugar and proline | 桑托林丝兰、沙棘、盐地碱蓬、小叶罗汉果,迷迭香、鹰嘴豆、梭梭Ceratocarpus arenarius,Seriphidium santolinum,Suaeda salsa,Eragrostis minor,Seidlitzia rosmarinus,Chick peas,and Sacsaoul | [ | ||
3 | 固氮 Fix nitrogen | 克雷伯氏菌、解磷细菌、芸苔假单胞菌 Klebsiella sp.,Pseudomonas frederickbergensis,and Pseudomonas brassicacearum | 亚精胺,胞外多糖Spermidine and exopolysaccharides | 吲哚乙酸 IAA | ACC脱氨酶、固氮酶ACC deaminase,and nitrogenase | 阿尔哈吉、椰枣、黑果枸杞、多枝柽柳Alhagi sparsifolia,Phoenix dactylifera L.,Lycium ruthenicum,and Tamarix ramosissima | [ | |
4 | 增加鲜重、干重Increase fresh and dry weight | 嗜热真菌、克雷伯氏菌 Thermomyces lanuginosus,Klebsiella sp. | 总多糖,总黄酮和抗坏血酸,亚精胺Total polysaccharides,total flavonoids,ascorbic acid,and spermidine | 吲哚乙酸 IAA | 苯丙氨酸解氨酶、过氧化氢酶、过氧化物酶PAL,CAT,and POD | 皱襞植物、阿尔哈吉Cullen plicata Delile,and Alhagi sparsifolia | [ | |
5 | 增加根重,茎重Increase root weight and stem weight | 短芽孢杆菌属、解磷细菌、芸苔假单胞菌 Brevibacillus sp.,Pseudomonas frederickbergensis,and Pseudomonas brassicacearum | 胞外多糖Exopolysaccharides | 吲哚乙酸 IAA | 纤维素酶、果胶酶、ACC脱氨酶Cellulase,pectase,and ACC deaminase | 翅果油树、桂花、椰枣Fagonia mollis Delile,Achillea fragrantissima(Forssk)Sch. Bip.,and Phoenix dactylifera L. | [ | |
6 | 增加叶片叶绿素浓度,提高光合作用Increase leaf chlorophyll concentration and improve photosynthesis | 奇氏新孢霉、新卡玛孢菌、巨大芽孢杆菌、解淀粉芽孢杆菌、阴沟肠杆菌、肺炎克雷伯菌 Neocamarosporium chichastianum,Neocamarosporium goegapense,Periconia macrospinosa,Bacillus megaterium,B.amylolique faciens,Enterobacter cloacae,and Klebsiella pneumoniae | 胞外多糖Exopolysaccharides | 苯丙氨酸解氨酶、过氧化氢酶、过氧化物酶、抗坏血酸过氧化物酶、谷胱甘肽过氧化物酶、超氧化歧化酶PAL,CAT,POD,APX,GPX,and SOD | 脯氨酸Proline | 迷迭香、鹰嘴豆、梭梭、仙人掌Seidlitzia rosmarinus,Chick peas,Sacsaoul,and Euphorbia trigonas | [ | |
7 | 提高种子萌发率Improve seed germination rate | 芽孢杆菌、葡萄球菌属、假单孢菌属、地衣芽孢杆菌、莫哈韦芽孢杆菌、枯草芽孢杆菌 Bacillus,Staphylococcus,Pseudomonas,B. licheniformis,B. mojavensi,and B. subtilis | 吲哚乙酸 IAA | 脯氨酸Proline | 银砂槐、抱茎独行菜Ammodendron bifolium,and Lepidium perfoliatum L. | [ | ||
8 | 提高植株磷、氮的含量Increase plant phosphorus and nitrogen content | 短芽孢杆菌属 Brevibacillus sp | 吲哚乙酸 IAA | 纤维素酶、果胶酶、ACC脱氨酶Cellulase,pectase,and ACC deaminase | 翅果油树、桂花、椰枣Fagonia mollis Delile,Achillea fragrantissima(Forssk)Sch. Bip.,and Phoenix dactylifera L. | [ | ||
9 | 促进植物生长Promote plant growth | 泛菌属、深色有隔内生菌、芽孢杆菌(pantoea)的Pantoea alhagi sp.nov,Dark septate endophytes,Bacillus | 铁载体,胞外多糖,氨,糖原,蛋白质,多聚磷酸盐,磷Siderophores,exopolysaccharides, ammonia,glycogen,protein,polyphosphate,and phosphorus | 吲哚乙酸 IAA | 蛋白酶、纤维素酶,果胶酶、木聚糖酶Protease,cellulase,and pectase,pentopan mono | 可溶性糖、丙二醛、脯氨酸、钙、钾Soluble sugar, malondiald- ehyde,proline,calcium,and kalium | 骆驼刺、裸果木、紫茎泽兰Alhagi sparsifolia Shap,Gymnocarpos przewalskii,and Teucrium polium | [ |
10 | 提高抗干旱能力Improve drought resistance | 芽孢杆菌、葡萄球菌属、假单孢菌属、泛菌属、深色有隔内生菌、巨大芽孢杆菌、解淀粉芽孢杆菌、阴沟肠杆菌、肺炎克雷伯菌(Bacillus,Staphylococcus,Pseudomonas,pantoea)的Pantoea alhagi sp.nov,Dark septate endophytes,Bacillus megaterium,B.amylolique faciens,Enterobacter cloacae,Klebsiella pneumoniae | 铁载体,胞外多糖,氨,糖原,蛋白质,多聚磷酸盐,磷 Siderophores,exopolysaccharides, ammonia,glycogen,protein,polyphosphate,and phosphorus | 吲哚乙酸 IAA | 蛋白酶、抗坏血酸过氧化物酶、谷胱甘肽过氧化物酶、过氧化氢酶、超氧化歧化酶Protease,APX,GPX,CAT,and SOD | 脯氨酸 Proline | 银砂槐、裸果木、骆驼刺、仙人掌Ammodendron bifolium,Gymnocarpos przewalskii,Alhagi sparsifolia Shap,and Euphorbia trigonas | [ |
11 | 溶磷 Solve phosphorus | 解磷细菌、芸苔假单胞菌、克雷伯菌 Pseudomonas frederickbergensis,Pseudomonas brassicacearum,Klebsiella | 胞外多糖Exopolysaccharides | 吲哚乙酸 IAA | ACC脱氨酶、固氮酶ACC deaminase,and nitrogenase | 椰枣、黑果枸杞、多枝柽柳Phoenix dactylifera L.,Lycium ruthenicum,and Tamarix ramosissima | [ | |
12 | 形成生物膜 Form biofilms | 地衣芽孢杆菌、莫哈韦芽孢杆菌、 枯草芽孢杆菌 B.licheniformis,B.mojavensi,B.subtilis | 抱茎独行菜Lepidium perfoliatum L. | [ |
[1] |
Dai AG. Drought under global warming:a review[J]. WIREs Clim Change, 2011, 2(1):45-65.
doi: 10.1002/wcc.81 URL |
[2] |
Mishra AK, Singh VP. A review of drought concepts(Review)[J]. Journal of Hydrology. 2010, Vol. 391(No.1-2):202-216.
doi: 10.1016/j.jhydrol.2010.07.012 URL |
[3] |
Lai CG, Zhong RD, Wang ZL, et al. Monitoring hydrological drought using long-term satellite-based precipitation data[J]. Sci Total Environ, 2019, 649:1198-1208.
doi: 10.1016/j.scitotenv.2018.08.245 URL |
[4] | 胡桂萍, 郑雪芳, 尤民生, 等. 植物内生菌的研究进展[J]. 福建农业学报, 2010, 25(2):226-234. |
Hu GP, Zheng XF, You MS, et al. Recent advances in research on endophytes[J]. Fujian J Agric Sci, 2010, 25(2):226-234. | |
[5] | 贾栗, 陈疏影, 翟永功, 等. 近年国内外植物内生菌产生物活性物质的研究进展[J]. 中草药, 2007, 38(11):1750-1754. |
Jia L, Chen SY, Zhai YG, et al. Recent advances in studies on endophytes and their associated bioactive products[J]. Chin Tradit Herb Drugs, 2007, 38(11):1750-1754. | |
[6] | 许明双. 番茄和水稻种子可培养内生细菌的多样性分析及促生菌功能研究[D]. 北京: 中国农业大学, 2014. |
Xu MS. Culturable bacterial community compositions from seeds of tomato and rice and function of plant growth promoting endophytic bacteria[D]. Beijing: China Agricultural University, 2014. | |
[7] | 童文君. 美花石斛内生菌多样性分析及促生潜力研究[D]. 南京: 南京师范大学, 2014. |
Tong WJ. Analysis of endophytic diversity and growth promotion potential of Dendrobium loddigesii Rolfe[D]. Nanjing: Nanjing Normal University, 2014. | |
[8] | 关晔晴, 张宝俊, 韩巨才, 等. 植物内生放线菌在农业上的应用研究进展[J]. 农业技术与装备, 2011(6):52-56. |
Guan YQ, Zhang BJ, Han JC, et al. Research progress on application of plant endophytic actinomycetes in agriculture[J]. Agric Technol Equip, 2011(6):52-56. | |
[9] |
Strobel G, Daisy B, et al. Natural products from endophytic microorganisms[J]. J Nat Prod, 2004, 67(2):257-268.
pmid: 14987067 |
[10] |
Xie ZC, Chu YK, Zhang WJ, et al. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environ Exp Bot, 2019, 158:99-106.
doi: 10.1016/j.envexpbot.2018.11.021 URL |
[11] | 胡美玲, 郑勇, 孙翔, 等. 内生真菌促进玉米幼苗的抗旱性研究[J]. 菌物学报, 2017, 36(11):1556-1565. |
Hu ML, Zheng Y, Sun X, et al. Effects of endophytic fungi on drought resistance of maize seedlings[J]. Mycosystema, 2017, 36(11):1556-1565. | |
[12] |
Larran S, Simón MR, Moreno MV, et al. Endophytes from wheat as biocontrol agents against tan spot disease[J]. Biol Control, 2016, 92:17-23.
doi: 10.1016/j.biocontrol.2015.09.002 URL |
[13] | 张凯璇, 唐艳葵, 等. 植物内生菌应用于有害金属污染环境修复研究进展[J]. 江苏农业科学, 2018, 46(6):17-22. |
Zhang KX, Tang YK, et al. Research progress on application of plant endophytes in remediation of environmental pollution caused by harmful metals[J]. Jiangsu Agric Sci, 2018, 46(6):17-22. | |
[14] | 杨福珍, 武纤雨, 张如养, 等. 玉米内生细菌资源研究进展[J]. 生物资源, 2019, 41(5):390-396. |
Yang FZ, Wu XY, Zhang RY, et al. Research advances on endophytic bacterial resources in maize[J]. Biotic Resour, 2019, 41(5):390-396. | |
[15] | 朱艳蕾, 米丽吾叶提·阿达力. 渗透胁迫条件下内生细菌对银砂槐种子萌发和主要碳水化合物含量的影响[J]. 植物资源与环境学报, 2018, 27(3):18-24. |
Zhu YL, Adali M. Effects of endophytic bacteria on seed germination and main carbohydrate contents in Ammodendron bifolium under osmotic stress condition[J]. J Plant Resour Environ, 2018, 27(3):18-24. | |
[16] | 朱艳蕾. 银砂槐内生细菌分离、生理特性及促生抗逆作用研究[D]. 西安: 陕西师范大学, 2018. |
Zhu YL. Isolation and identification of Ammodendron bifolium endophytic bacteria and the effects of selected isolates on host seed germination, initial radicle growth and osmotic stress tolerance[D]. Xi'an: Shaanxi Normal University, 2018. | |
[17] |
Zhu YL, She XP. Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium[J]. Can J Microbiol, 2018, 64(4):253-264.
doi: 10.1139/cjm-2017-0529 pmid: 29370531 |
[18] | Li YT, Cheng C, An DD. Characterisation of endophytic bacteria from a desert plant Lepidium perfoliatum L[J]. Plant Protect Sci, 2017, 53 (No. 1):32-43. |
[19] | Tian YZ, et al. Exploring the structural changes in nitrogen-fixing microorganisms of rhizosheath during the growth of Stipagrostis pennata in the desert[J]. Biosci Rep, 2021, 41(4): BSR20201679. |
[20] |
Tian YZ, Ma XL, Li YT, et al. Relationship between microbial diversity and nitrogenase activity of Stipagrostis pennata rhizosheath[J]. J Cell Biochem, 2019, 120(8):13501-13508.
doi: 10.1002/jcb.28625 pmid: 30938883 |
[21] | 胡美玲, 郑勇, 孙翔, 等. 5种内生真菌对玉米幼苗抗干旱的胁迫作用[J]. 菌物研究, 2018, 16(1):28-35. |
Hu ML, Zheng Y, Sun X, et al. Effect of five endophytic fungi on the growth of maize seedlings under drought stress[J]. J Fungal Res, 2018, 16(1):28-35. | |
[22] |
Zhang L, Zhong J, Liu H, et al. Complete genome sequence of the drought resistance-promoting endophyte Klebsiella sp. LTGPAF-6F[J]. J Biotechnol, 2017, 246:36-39.
doi: S0168-1656(17)30062-7 pmid: 28223006 |
[23] |
Hosseyni Moghaddam MS, Safaie N, Soltani J, et al. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops[J]. Plant Physiol Biochem, 2021, 160:225-238.
doi: 10.1016/j.plaphy.2021.01.022 URL |
[24] | 安登第, 等. 银沙槐内生放线菌抗菌活性及其与内生细菌的拮抗关系[J]. 应用生态学报, 2010, 21(4):1021-1025. |
An DD, et al. Anti-microbial activity of endophytic actinomycetes isolated from Ammodendron bifolium and their antagonism to endophytic bacteria[J]. Chin J Appl Ecol, 2010, 21(4):1021-1025. | |
[25] |
Zahra T, Hamedi J, Mahdigholi K. Endophytic actinobacteria of a halophytic desert plant Pteropyrum olivieri:promising growth enhancers of sunflower[J]. 3 Biotech, 2020, 10(12):514.
doi: 10.1007/s13205-020-02507-8 URL |
[26] |
Noori F, Etesami H, Najafi Zarini H, et al.Mining alfalfa(Medicago sativa L.)nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress[J]. Ecotoxicol Environ Saf, 2018, 162:129-138.
doi: 10.1016/j.ecoenv.2018.06.092 URL |
[27] |
Jha B, Gontia I, Hartmann A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential[J]. Plant Soil, 2012, 356(1/2):265-277.
doi: 10.1007/s11104-011-0877-9 URL |
[28] |
ALKahtani MDF, Fouda A, Attia KA, et al. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture[J]. Agronomy, 2020, 10(9):1325.
doi: 10.3390/agronomy10091325 URL |
[29] |
Razzaghi Komaresofla B, Alikhani HA, Etesami H, et al. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria[J]. Appl Soil Ecol, 2019, 138:160-170.
doi: 10.1016/j.apsoil.2019.02.022 |
[30] | 宋艳雨, 杨镇, 马晓颖, 等. 一株具有植物促生作用的沙棘内生真菌的分离鉴定[J]. 辽宁农业科学, 2016(2):19-22. |
Song YY, Yang Z, Ma XY, et al. Isolation and identification of a strain endophytic fungi made plant growth promoting from sea buckthorn[J]. Liaoning Agric Sci, 2016(2):19-22. | |
[31] |
Cherif H, Marasco R, Rolli E, et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought[J]. Environ Microbiol Rep, 2015, 7(4):668-678.
doi: 10.1111/1758-2229.12304 URL |
[32] | 王卫霞. 新疆几种典型荒漠植物根际微生物特征及内生固氮菌的分离、促生性能研究[D]. 乌鲁木齐: 新疆农业大学, 2009. |
Wang WX. The characteriestics of rhizosphere microorganisms, isolation and analysis their activity for plant growth-promoting of endophytic diazotrophic bacteria from typical desert plants in Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2009. | |
[33] |
Eke P, Kumar A, Sahu KP, et al. Endophytic bacteria of desert Cactus(Euphorbia trigonas Mill)confer drought tolerance and induce growth promotion in tomato(Solanum lycopersicum L.)[J]. Microbiol Res, 2019, 228:126302.
doi: 10.1016/j.micres.2019.126302 URL |
[34] |
Singh RP, Jha P, Jha PN. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat(Triticum aestivum)under salt stress[J]. J Plant Physiol, 2015, 184:57-67.
doi: 10.1016/j.jplph.2015.07.002 URL |
[35] | Ali AH, Radwan U, El-Zayat S, et al. The role of the endophytic fungus, Thermomyces lanuginosus, on mitigation of heat stress to its host desert plant Cullen plicata[J]. Biol Futura, 2019, 70(1):1-7. |
[36] | 滕松山, 刘艳萍, 赵蕾. 具ACC脱氨酶活性的碱蓬内生细菌的分离、鉴定及其生物学特性[J]. 微生物学报, 2010, 50(11):1503-1509. |
Teng SS, Liu YP, Zhao L. Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa[J]. Acta Microbiol Sin, 2010, 50(11):1503-1509. | |
[37] |
Yaish MW, Antony I, Glick BR. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree(Phoenix dactylifera L.)and their potential role in salinity tolerance[J]. Antonie Van Leeuwenhoek, 2015, 107(6):1519-1532.
doi: 10.1007/s10482-015-0445-z URL |
[38] |
Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops[J]. Can J Microbiol, 1997, 43(10):895-914.
doi: 10.1139/m97-131 URL |
[39] |
Surette MA, Sturz AV, Lada RR, et al. Bacterial endophytes in processing carrots(Daucus carota L. var.sativus):their localization, population density, biodiversity and their effects on plant growth[J]. Plant Soil, 2003, 253(2):381-390.
doi: 10.1023/A:1024835208421 URL |
[40] | 郭顺星. 药用植物内生真菌研究现状和发展趋势[J]. 菌物学报, 2018, 37(1):1-13. |
Guo SX. The recent progress and prospects of research on endophytic fungi in medicinal plants[J]. Mycosystema, 2018, 37(1):1-13. | |
[41] | 丁常宏, 都晓伟, 徐莹. 药用植物内生真菌的功能研究进展[J]. 中医药学报, 2013, 41(3):168-171. |
Ding CH, Du XW, Xu Y. Progress of study on function of endophytic fungi from medicinal plants[J]. Acta Chin Med Pharmacol, 2013, 41(3):168-171. | |
[42] | 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义[J]. 微生物学通报, 2015, 42(2):349-363. |
Wang ZW, Ji YL, Chen YG. Studies and biological significances of plant endophytes[J]. Microbiol China, 2015, 42(2):349-363. | |
[43] |
毕江涛, 潘润霞, 李乐, 等. 牛心朴子内生真菌分离及其抑菌活性分析[J]. 草地学报, 2014, 22(1):188-193.
doi: 10.11733/j.issn.1007-0435.2014.01.029 |
Bi JT, Pan RX, Li L, et al. Isolation and microbial inhibition activity of endophytic fungus from Cynanchum komarovii[J]. Acta Agrestia Sin, 2014, 22(1):188-193. | |
[44] | 徐振鲁, 王彦多, 孙炳达, 等. 一株特殊生境荒漠植物雾冰藜内生真菌Stagonospora sp. 的次级代谢产物[J]. 菌物学报, 2020, 39(3):581-588. |
Xu ZL, Wang YD, Sun BD, et al. Secondary metabolites of an endophytic fungus Stagonospora sp. inhabiting in desert plant Bassia dasyphylla[J]. Mycosystema, 2020, 39(3):581-588. | |
[45] | 李露莹, 王彦多, 刘振亮, 等. 一株特殊生境荒漠药用植物沙蓬内生真菌Rhinocladiella similis中苯甲酸大环内酯化合物[J]. 菌物学报, 2020, 39(3):589-598. |
Li LY, Wang YD, Liu ZL, et al. Resorcylic acid analogs from the desert plant endophytic fungus Rhinocladiella similis[J]. Mycosystema, 2020, 39(3):589-598. | |
[46] | 侯力峰. 三种荒漠植物深色有隔内生真菌物种多样性和耐盐性研究[D]. 保定: 河北大学, 2020. |
Hou LF. Species diversity and salt tolerance of dark septate endophytes in three desert plants[D]. Baoding: Hebei University, 2020. | |
[47] | 张琳琳. 安西极旱荒漠植物深色有隔内生真菌多样性及其耐旱性研究[D]. 保定: 河北大学, 2018. |
Zhang LL. Species diversity and drought resistance of dark septate endophytes in the rhizospheres of different plants in Anxi extreme arid desert[D]. Baoding: Hebei University, 2018. | |
[48] | 赵珂, 徐宽, 等. 几种野生药用植物内生放线菌的遗传多样性及抗菌活性[J]. 四川农业大学学报, 2011, 29(2):225-229, 279. |
Zhao K, Xu K, et al. The genetic diversity and antibiotic activity of endophytic actinomycetes from medicinal plants in Sichuan[J]. J Sichuan Agric Univ, 2011, 29(2):225-229, 279. | |
[49] | 马丽冉. 新疆特色药用植物内生放线菌多样性分析及两株链霉菌新物种多相分类[D]. 阿拉尔: 塔里木大学, 2020. |
Ma LR. Diversity analysis of endogenous actinomycetes of Xinjiang characteristic medicinal plants and multi-phase classification of two new Streptomyces species[D]. Ala'er: Tarim University, 2020. | |
[50] | 雷艳娟, 夏占峰, 等. 新疆13种荒漠植物根内生放线菌多样性及其抗菌活性筛选[J]. 塔里木大学学报, 2020, 32(3):1-13. |
Lei YJ, Xia ZF, et al. Diversity and antimicrobial activity of the endophytic actinomycetes from the root of 13 desert plants in Xinjiang[J]. J Tarim Univ, 2020, 32(3):1-13. | |
[51] | 祁鹤兴, 等. 宁夏白芨滩自然保护区苦豆子内生放线菌多样性及其分布[J]. 微生物学通报, 2015, 42(6):990-1000. |
Qi HX, et al. Diversity and distribution of endophytic actinomycetes strains in Sophora alopecuroides L. from Baijitan Nature Reserve of Ningxia[J]. Microbiol China, 2015, 42(6):990-1000. | |
[52] |
El-Shatoury SA, El-Kraly OA, Trujillo ME, et al. Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai - Egypt[J]. Res Microbiol, 2013, 164(7):761-769.
doi: 10.1016/j.resmic.2013.03.004 pmid: 23541473 |
[53] |
Natsagdorj O, Bekh-Ochir D, Baljinova T, et al. Bioactive compounds and molecular diversity of endophytic actinobacteria isolated from desert plants[J]. IOP Conf Ser:Earth Environ Sci, 2021, 908(1):012008.
doi: 10.1088/1755-1315/908/1/012008 URL |
[54] |
Carvalho M, Matos M, Castro I, et al. Screening of worldwide cowpea collection to drought tolerant at a germination stage[J]. Sci Hortic, 2019, 247:107-115.
doi: 10.1016/j.scienta.2018.11.082 URL |
[55] |
Koźmińska A, Al Hassan M, Wiszniewska A, et al. Responses of succulents to drought:comparative analysis of four Sedum(Crassulaceae)species[J]. Sci Hortic, 2019, 243:235-242.
doi: 10.1016/j.scienta.2018.08.028 URL |
[56] |
Tombesi S, Frioni T, Poni S, et al. Effect of water stress “memory” on plant behavior during subsequent drought stress[J]. Environ Exp Bot, 2018, 150:106-114.
doi: 10.1016/j.envexpbot.2018.03.009 URL |
[57] |
Chaves MM, Oliveira MM. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture[J]. J Exp Bot, 2004, 55(407):2365-2384.
pmid: 15475377 |
[58] |
Osakabe Y, Osakabe K, Shinozaki K, et al. Response of plants to water stress[J]. Front Plant Sci, 2014, 5:86.
doi: 10.3389/fpls.2014.00086 pmid: 24659993 |
[59] |
Khan AL, Waqas M, et al. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium[J]. Environ Exp Bot, 2017, 133:58-69.
doi: 10.1016/j.envexpbot.2016.09.009 URL |
[60] |
Zhang SH, Xu XF, Sun YM, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. J Integr Agric, 2018, 17(2):336-347.
doi: 10.1016/S2095-3119(17)61758-1 |
[61] |
Tanveer M, Shahzad B, et al. 24-Epibrassinolide application in plants:an implication for improving drought stress tolerance in plants[J]. Plant Physiol Biochem, 2019, 135:295-303.
doi: 10.1016/j.plaphy.2018.12.013 URL |
[62] | Chen C, Xin K, Liu H, et al. Pantoea Alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat[J]. Sci Reports, 2017, 7:41564. |
[63] | Li X, He X, Hou L, et al. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition[J]. Sci Reports, 2018, 8:7896. |
[64] |
Hassan SED. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L[J]. J Adv Res, 2017, 8(6):687-695.
doi: 10.1016/j.jare.2017.09.001 URL |
[65] |
Chen Q, Tao SY, Bi XH, et al. Research progress in physiological and molecular biology mechanism of drought resistance in rice[J]. Am J Mol Biol, 2013, 3(2):102-107.
doi: 10.4236/ajmb.2013.32014 URL |
[66] |
Zhang Q, Yu HQ, Sun P, et al. Multisource data based agricultural drought monitoring and agricultural loss in China[J]. Glob Planet Change, 2019, 172:298-306.
doi: 10.1016/j.gloplacha.2018.10.017 URL |
[67] | 剡涛哲. 荒漠植物内生细菌对植物抗旱耐盐的影响[D]. 兰州: 兰州大学, 2019. |
Yan TZ. Effects of endophytic bacteria in desert plants on drought and salt resistance of plants[D]. Lanzhou: Lanzhou University, 2019. | |
[68] | 刘倩雯. 碱蓬内生菌EF0801对PEG胁迫下水稻幼苗的缓解作用[D]. 沈阳: 沈阳师范大学, 2017. |
Liu QW. Alleviation of endophyte EF0801 from S. salsa to the damage of rice seedlings under PEG stress[D]. Shenyang: Shenyang Normal University, 2017. | |
[69] | 强晓晶. 披碱草内生真菌对小麦抗旱性的影响机制[D]. 北京: 中国农业科学院, 2019. |
Qiang XJ. Mechanisms underlying the effects of endophytic fungi isolated from Elymus dahuricus on the drought resistance of wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
[70] | 曲发斌, 于明礼, 张柱岐, 等. 短小芽孢杆菌对番茄种子萌发及幼苗生长的影响[J]. 北方园艺, 2014(15):109-111. |
Qu FB, Yu ML, Zhang ZQ, et al. Effects of Bacillus pumilus on seed germination and seedling growth of tomato[J]. North Hortic, 2014(15):109-111. | |
[71] | 苏阿德, 谢关林, 李斌, 等. 芽孢杆菌在促进番茄生长和控制青枯病上的比较优势(英文)[J]. 浙江大学学报:农业与生命科学版, 2004, 30(6):603-610. |
Su AD, Xie GL, Li B, et al. Comparative performance of Bacillus spp. in growth promotion and(suppression)of tomato bacterial wilt caused by Ralstonia solanacearum[J]. J Zhejiang Univ Agric& Life Sci, 2004, 30(6):603-610. | |
[72] | Sánchez-Blanco MJ, Álvarez S, Ortuño MF, et al. Root system response to drought and salinity:Root distribution and water transport[M]// Root Engineering. Berlin, Heidelberg:Springer, 2014:325-352. |
[73] |
De Gara L, Foyer CH. Ying and Yang interplay between reactive oxygen and reactive nitrogen species controls cell functions[J]. Plant Cell Environ, 2017, 40(4):459-461.
doi: 10.1111/pce.12936 URL |
[74] | 陆玉建, 高春明, 郑香峰, 等. 盐胁迫对拟南芥种子萌发的影响[J]. 湖北农业科学, 2012, 51(22):5099-5104. |
Lu YJ, Gao CM, Zheng XF, et al. Effects of salt stress on germination of Arabidopsis thaliana seeds[J]. Hubei Agric Sci, 2012, 51(22):5099-5104. | |
[75] | 鱼小军, 师尚礼, 龙瑞军, 等. 生态条件对种子萌发影响研究进展[J]. 草业科学, 2006, 23(10):44-49. |
Yu XJ, Shi SL, Long RJ, et al. Research progress on effects of ecological factors on seed germination[J]. Pratacultural Sci, 2006, 23(10):44-49. | |
[76] |
Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils:a review[J]. Agron Sustain Dev, 2014, 34(4):737-752.
doi: 10.1007/s13593-014-0233-6 URL |
[77] |
Qin Y, Druzhinina IS, Pan XY, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnol Adv, 2016, 34(7):1245-1259.
doi: S0734-9750(16)30106-9 pmid: 27587331 |
[78] |
Razzaghi Komaresofla B, Alikhani HA, Etesami H, et al. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria[J]. Appl Soil Ecol, 2019, 138:160-170.
doi: 10.1016/j.apsoil.2019.02.022 |
[79] |
Sewelam N, Kazan K, Schenk PM. Global plant stress signaling:reactive oxygen species at the cross-road[J]. Front Plant Sci, 2016, 7:187.
doi: 10.3389/fpls.2016.00187 pmid: 26941757 |
[80] |
Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review[J]. Microbiol Res, 2018, 209:21-32.
doi: 10.1016/j.micres.2018.02.003 URL |
[81] |
Szabados L, Savouré A. Proline:a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181 |
[82] |
Slama I, Abdelly C, Bouchereau A, et al. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress[J]. Ann Bot, 2015, 115(3):433-447.
doi: 10.1093/aob/mcu239 URL |
[83] |
Fahad S, Hussain S, Matloob A, et al. Phytohormones and plant responses to salinity stress:a review[J]. Plant Growth Regul, 2015, 75(2):391-404.
doi: 10.1007/s10725-014-0013-y URL |
[84] | Chakraborty U, Roy S, et al. Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium[J]. Recent Res Sci Technol, 2011, 3(11):61-70. |
[85] |
Win KT, Tanaka F, et al. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants[J]. Plant Physiol Biochem, 2018, 127:599-607.
doi: 10.1016/j.plaphy.2018.04.038 URL |
[86] | 吕海伦. 生态友好型耐盐性禾本科植物内生细菌的筛选、鉴定及其对作物的促生效果[D]. 南京: 南京农业大学, 2018. |
Lv HL. Screening and identification of endophytic bacteria in eco-friendly salt-tolerant gramineous plants and their promotion effect on crops[D]. Nanjing: Nanjing Agricultural University, 2018. | |
[87] |
Liu YP, Cao LX, Tan HM, et al. Surface display of ACC deaminase on endophytic Enterobacteriaceae strains to increase saline resistance of host rice sprouts by regulating plant ethylene synthesis[J]. Microb Cell Fact, 2017, 16(1):214.
doi: 10.1186/s12934-017-0831-5 pmid: 29183329 |
[88] | 张宏一, 朱志华. 植物干旱诱导蛋白研究进展[J]. 植物遗传资源学报, 2004, 5(3):268-270. |
Zhang HY, Zhu ZH. Research progress in drought-induced proteins in plants[J]. J Plant Genet Resour, 2004, 5(3):268-270. | |
[89] |
Timmusk S, Wagner EG. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses[J]. Mol Plant Microbe Interact, 1999, 12(11):951-959.
doi: 10.1094/MPMI.1999.12.11.951 URL |
[90] |
Asaf S, Khan AL, Khan MA, et al. Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth[J]. 3 Biotech, 2018, 8(9):389.
doi: 10.1007/s13205-018-1403-z URL |
[91] |
Duan J, Jiang W, Cheng ZY, et al. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4[J]. PLoS One, 2013, 8(3):e58640.
doi: 10.1371/journal.pone.0058640 URL |
[92] |
Garg AK, Kim JK, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proc Natl Acad Sci USA, 2002, 99(25):15898-15903.
doi: 10.1073/pnas.252637799 URL |
[93] | 陈超琼. 骆驼刺内生细菌新种Pantoea alhagi LTYR-11Z的鉴定及其促作物抗旱机制初步研究[D]. 杨凌: 西北农林科技大学, 2017. |
Chen CQ. The identification of a novel endophytic bacterium Pantoea alhagi LTYR-11Z from Alhagi sparsifolia shap. and dissecting mechanism underlying enhanced drought resistance in crops[D]. Yangling: Northwest A & F University, 2017. | |
[94] | 王谦. 中国干旱、 半干旱地区的分布及其主要气候特征[J]. 干旱地区农业研究, 1983, 1(0):11-24. |
Wang Q. Distribution of the arid and semiarid areas in China and their major climatic characteristics[J]. Agric Res Arid Areas, 1983, 1(0):11-24. | |
[95] | 李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展[J]. 中国沙漠, 2010, 30(5):1053-1059. |
Li L, Jia ZQ, Zhu YJ, et al. Research advances on drought resistance mechanism of plant species in arid area of China[J]. J Desert Res, 2010, 30(5):1053-1059. | |
[96] | 李世英. 我国干旱区植物生态学工作的回顾和展望[J]. 生态学报, 1983, 3(4):357-365. |
Li SY. Perspective of plant ecology in the arid land of China[J]. Acta Ecol Sin, 1983, 3(4):357-365. | |
[97] |
马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 等. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 2021, 37(3):153-161.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0973 URL |
Ma Q, Lei RF, Dilireba A, et al. Research progress on the symbiotic metabolic of endophytes and plants under stress[J]. Biotechnol Bull, 2021, 37(3):153-161.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0973 URL |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[3] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[4] | XIE Wei, LIU Chun-ming. Commercialization of Biological Breeding in China: Opportunities and Policy Issues [J]. Biotechnology Bulletin, 2023, 39(1): 16-20. |
[5] | LIN Ying, YANG Wen-li, ZHOU Ling-yan, JIANG Da-gang. Research Progress in Agricultural Genetically Modified Nucleic Acid Reference Materials [J]. Biotechnology Bulletin, 2022, 38(8): 52-59. |
[6] | XU Chong-xin, ZHONG Jian-feng, GAO Mei-jing, LU Li-na, LIU Xian-jin, SHEN Yan. Research Progress in Plant Endophyte on the Quality Safety and Nutritional Quality Regulation of Edible Agricultural Products [J]. Biotechnology Bulletin, 2022, 38(5): 215-227. |
[7] | XU Miao-yun, XING Li-juan, YANG Ming-yu, ZHANG Ling-xuan, WANG Lei, LIU Yue-ping. Research Progress in Germplasm Innovation and Utilization of High Amylose Cereal Crops [J]. Biotechnology Bulletin, 2022, 38(4): 20-28. |
[8] | DU Jia-hui, XU Wei-fang, YANG Xiao-dong, TAN Song, YIN Deng-ke, LIU Yuan-xu. Isolation and Screening of Endophytes Producing Indole Acetic Acid from Polygonatum cyrtonema Hua. and Its Effect on Seed Germination of Polygonatum [J]. Biotechnology Bulletin, 2022, 38(12): 223-232. |
[9] | WANG Ting, YANG Yang, LI Jin-ping, DU Kun. Research Progress in the Effects of Genetically Modified Crops on Soil Microbial Community [J]. Biotechnology Bulletin, 2021, 37(9): 255-265. |
[10] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[11] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[12] | WU Qi-man, ZHANG Jin-mei, LI Yue-ying, ZHANG Ying. Recent Advances on the Mechanism of Beneficial Microbial Fertilizers in Crops [J]. Biotechnology Bulletin, 2021, 37(5): 221-230. |
[13] | MA qin, LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di. Research Progress on the Symbiotic Metabolic of Endophytes and Plants Under Stress [J]. Biotechnology Bulletin, 2021, 37(3): 153-161. |
[14] | DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies [J]. Biotechnology Bulletin, 2021, 37(10): 216-224. |
[15] | SUN Yu, CHANG Jing-jing, TIAN Chun-jie. Technical Systems of Reorganization and Construction of Crop Rhizosphere Microbiome [J]. Biotechnology Bulletin, 2020, 36(9): 25-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||