Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 43-52.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1175
Previous Articles Next Articles
CHEN Fu-nuan(), HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei()
Received:
2021-09-14
Online:
2022-06-26
Published:
2022-07-11
Contact:
WANG Bei
E-mail:Chenfunuan970716@126.com;wong19820204@126.com
CHEN Fu-nuan, HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei. Structure of ABC Transporter and Research Progress of It in Bacterial Pathogenicity[J]. Biotechnology Bulletin, 2022, 38(6): 43-52.
基序Motif | 共有序列Consensus sequence | 功能Function | 代表性蛋白Repretative proteins |
---|---|---|---|
Walker A | Gxx Gx GKST | ATP binding | His P,MJ0796,MJ1267,Rad50,TAP1,GlcV,E.c.Mal K |
Q loop | Q0 | a. TM subunit interaction b. Q H-bond to Mg c. Binding to the attacking water | a. Btu CD b.MJ0796(E171Q),Glc V/ADP c.MJ0796(E171Q) |
Signature motif | LSGGQx QR | ATP binding | Rad50,MJ0796(E171Q),E.c.Mal K |
Walker B | hhhh D | D makes a water-bridged contact with Mg2+ | Glc V(Mg ADP,Mg AMPPNP),MJ1267(Mg ADP),MJ0796(Mg ADP) |
D loop | E following Walker B | a. Binds to attacking water b.Binds to Mg through a water | a. MJ0796(E171Q) b. Glc V(Mg ADP,Mg AMPPNP) |
H motif or Switch region | H | His H-bond to-phosphate | MJ0796(E171Q),E.c.Mal K |
Table 1 Functions of conserved motifs in the nucleotide-binding domain
基序Motif | 共有序列Consensus sequence | 功能Function | 代表性蛋白Repretative proteins |
---|---|---|---|
Walker A | Gxx Gx GKST | ATP binding | His P,MJ0796,MJ1267,Rad50,TAP1,GlcV,E.c.Mal K |
Q loop | Q0 | a. TM subunit interaction b. Q H-bond to Mg c. Binding to the attacking water | a. Btu CD b.MJ0796(E171Q),Glc V/ADP c.MJ0796(E171Q) |
Signature motif | LSGGQx QR | ATP binding | Rad50,MJ0796(E171Q),E.c.Mal K |
Walker B | hhhh D | D makes a water-bridged contact with Mg2+ | Glc V(Mg ADP,Mg AMPPNP),MJ1267(Mg ADP),MJ0796(Mg ADP) |
D loop | E following Walker B | a. Binds to attacking water b.Binds to Mg through a water | a. MJ0796(E171Q) b. Glc V(Mg ADP,Mg AMPPNP) |
H motif or Switch region | H | His H-bond to-phosphate | MJ0796(E171Q),E.c.Mal K |
Fig. 1 Schematic diagram of NBD dimer structure(Orelle) Homodimers(left panel),heterodimers(right panel);A:A-loop. WA:Walker-A. Q:Q-loop. WB:Walker-B. E:E-loop. H:H-loop. NBS:Nucleotide binding site. C:C-loop. D:D-loop
Fig. 2 Structure of ABC transporter(Locher) A:Staphylococcus aureus multidrug transporter Sav1866. B:Archaeoglobus fulgidus molybdate/tungstate transporter ModBC-A41. C:E. coli vitamin B12 transporter BtuCD-F53. D:Lactobacillus brevis folate importer EcfAST87
Fig. 3 Schematic diagram of ABC transporter function(Locher) A:ABC importers,which require a substrate binding protein(SBP)that feeds the hydrophilic substrates into the translocation pathway formed by the TMDs. B:ABC exporters,which typically have their TMDs fused to the ABCs
Fig. 4 Roles associated with ABC transporters involved in bacterial pathogenicity in a model Gram-negative cell(Victoria) A:Type I secretions systems associated with toxin,S-layer protein,siderophore,hydrolytic enzyme or antimicrobial peptide secretion;B:glycoconjugate and polysaccharide biogenesis pathways,which are involved in membrane biogenesis and immune evasion;C:Efflux transporters;D:Associated with processes such as nutrient acquisition(e.g. metal ions,amino acids,vitamins and oligopeptides)and osmoprotection
[1] |
Davidson AL, Dassa E, Orelle C, et al. Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev, 2008, 72(2):317-64.
doi: 10.1128/MMBR.00031-07 URL |
[2] |
Fuellen G, Spitzer M, Cullen P, et al. Correspondence of function and phylogeny of ABC proteins based on an automated analysis of 20 model protein data sets[J]. Proteins, 2005, 61(4):888-899.
doi: 10.1002/prot.20616 URL |
[3] |
Davidson AL, Chen J. ATP-binding cassette transporters in bacteria[J]. Annu Rev Biochem, 2004, 73:241-268.
pmid: 15189142 |
[4] | 侯文韬, 王亮, 徐达, 等. ABC转运蛋白与人类疾病[J]. 中国科学技术大学学报, 2018, 48(10):853-861. |
Hou WT, Wang L, Xu D, et al. ABC transporters and human diseases[J]. J Univ Sci Technol China, 2018, 48(10):853-861. | |
[5] | Moussatova A, Kandt C, O’Mara ML, et al. ATP-binding cassette transporters in Escherichia coli[J]. Biochim Biophys Acta, 2008, 1778(9):1757-1771. |
[6] |
Hollenstein K, Frei DC, Locher KP. Structure of an ABC transporter in complex with its binding protein[J]. Nature, 2007, 446(7132):213-216.
doi: 10.1038/nature05626 URL |
[7] |
Trowitzsch S, Tampé R. ABC transporters in dynamic macromolecular assemblies[J]. J Mol Biol, 2018, 430(22):4481-4495.
doi: S0022-2836(18)30893-3 pmid: 30089236 |
[8] |
Jones PM, George AM. The ABC transporter structure and mechanism:perspectives on recent research[J]. Cell Mol Life Sci, 2004, 61(6):682-699.
doi: 10.1007/s00018-003-3336-9 pmid: 15052411 |
[9] |
Higgins CF, Hiles ID, Whalley K, et al. Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems[J]. EMBO J, 1985, 4(4):1033-1039.
doi: 10.1002/j.1460-2075.1985.tb03735.x pmid: 3926486 |
[10] |
Kitaoka S, Wada K, Hasegawa Y, et al. Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery[J]. FEBS Lett, 2006, 580(1):137-143.
doi: 10.1016/j.febslet.2005.11.058 URL |
[11] |
M Prieβ, H Gö dd eke, Groenhof G, et al. Molecular Mechanism of ATP Hydrolysis in an ABC Transporter[J]. Acs Central Science, 2018, 4(10):1334-1343
doi: 10.1021/acscentsci.8b00369 URL |
[12] |
Zaitseva J, Jenewein S, Jumpertz T, et al. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB[J]. EMBO J, 2005, 24(11):1901-1910.
pmid: 15889153 |
[13] |
Schneider E, Hunke S. ATP-binding-cassette(ABC)transport systems:functional and structural aspects of the ATP-hydrolyzing subunits/domains[J]. FEMS Microbiol Rev, 1998, 22(1):1-20.
pmid: 9640644 |
[14] |
Orelle C, Mathieu K, Jault JM. Multidrug ABC transporters in bacteria[J]. Res Microbiol, 2019, 170(8):381-391.
doi: 10.1016/j.resmic.2019.06.001 URL |
[15] |
Moody JE, Millen L, Binns D, et al. Cooperative,ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters[J]. J Biol Chem, 2002, 277(24):21111-21114.
doi: 10.1074/jbc.C200228200 URL |
[16] |
Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter[J]. Nature, 2006, 443(7108):180-185.
doi: 10.1038/nature05155 URL |
[17] | Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE:functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Res, 2017, 45(d1):D200-D203. |
[18] | 冯振月. 大肠杆菌ABC家族药物外排转运体YbhFSR及YddA功能的研究[D]. 大庆: 黑龙江八一农垦大学, 2020. |
Feng ZY. Functional characterization of the ABC drug transporters, YbhFSR and YddA, from Escherichia coli[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020. | |
[19] |
Sakamoto M, Suzuki H, Yura K. between conformation shift and disease related variation sites in ATP-binding cassette transporter proteins[J]. Biophys Physicobiol, 2019, 16:68-79.
doi: 10.2142/biophysico.16.0_68 pmid: 30923664 |
[20] |
Velamakanni S, Yao Y, Gutmann DA, et al. Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus[J]. Biochemistry, 2008, 47(35):9300-9308.
doi: 10.1021/bi8006737 pmid: 18690712 |
[21] |
Locher KP. Structure and mechanism of ATP-binding cassette transporters[J]. Phil Trans R Soc B, 2009, 364(1514):239-245.
doi: 10.1098/rstb.2008.0125 URL |
[22] |
Kotlyarov S, Kotlyarova A. The role of ABC transporters in lipid metabolism and the comorbid course of chronic obstructive pulmonary disease and atherosclerosis[J]. Int J Mol Sci, 2021, 22(13):6711-6711.
doi: 10.3390/ijms22136711 URL |
[23] |
Lewinson O, Livnat-Levanon N. Mechanism of action of ABC importers:conservation, divergence, and physiological adaptations[J]. J Mol Biol, 2017, 429(5):606-619.
doi: S0022-2836(17)30038-4 pmid: 28104364 |
[24] |
ter Beek J, Guskov A, Slotboom DJ. Structural diversity of ABC transporters[J]. J Gen Physiol, 2014, 143(4):419-435.
doi: 10.1085/jgp.201411164 URL |
[25] |
Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins[J]. Curr Opin Struct Biol, 2007, 17(4):412-418.
doi: 10.1016/j.sbi.2007.07.003 URL |
[26] |
Wang T, Fu G, Pan X, et al. Structure of a bacterial energy-coupling factor transporter[J]. Nature, 2013, 497(7448):272-276.
doi: 10.1038/nature12045 URL |
[27] |
Karpowich NK, Wang DN. Assembly and mechanism of a group II ECF transporter[J]. PNAS, 2013, 110(7):2534-2539.
doi: 10.1073/pnas.1217361110 pmid: 23359690 |
[28] |
Kang J, Hwang JU, Lee M, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid[J]. PNAS, 2010, 107(5):2355-2360.
doi: 10.1073/pnas.0909222107 URL |
[29] |
Lee M, Choi Y, Burla B, et al. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2[J]. Nat Cell Biol, 2008, 10(10):1217-1223.
doi: 10.1038/ncb1782 URL |
[30] |
Holland IB. Rise and rise of the ABC transporter families[J]. Res Microbiol, 2019, 170(8):304-320.
doi: S0923-2508(19)30088-9 pmid: 31442613 |
[31] |
Smith PC, Karpowich N, Millen L, et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer[J]. Mol Cell, 2002, 10(1):139-149.
pmid: 12150914 |
[32] |
Morbach S, Tebbe S, Schneider E. The ATP-binding cassette(ABC)transporter for maltose/maltodextrins of Salmonella typhimurium. Characterization of the ATPase activity associated with the purified MalK subunit[J]. J Biol Chem, 1993, 268(25):18617-18621.
pmid: 8360157 |
[33] |
Liu CE, Liu PQ, Ames GF. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase(ABC transporter)[J]. J Biol Chem, 1997, 272(35):21883-21891.
doi: 10.1074/jbc.272.35.21883 pmid: 9268321 |
[34] |
Zolnerciks JK, Wooding C, Linton KJ. Evidence for a Sav1866-like architecture for the human multidrug transporter P-glycoprotein[J]. FASEB J, 2007, 21(14):3937-3948.
doi: 10.1096/fj.07-8610com pmid: 17627029 |
[35] |
Locher KP. Mechanistic diversity in ATP-binding cassette(ABC)transporters[J]. Nat Struct Mol Biol, 2016, 23(6):487-493.
doi: 10.1038/nsmb.3216 URL |
[36] | Hassan KA, Skurray RA, Brown MH. Active export proteins mediating drug resistance in staphylococci[J]. J Mol Microbiol Biotechnol, 2007, 12(3/4):180-196. |
[37] | Paulsen IT, Chen J, Nelson KE, et al. Comparative genomics of microbial drug efflux systems[J]. J Mol Microbiol Biotechnol, 2001, 3(1):145-150. |
[38] |
Gebhard S. ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function and regulation[J]. Mol Microbiol, 2012, 86(6):1295-1317.
doi: 10.1111/mmi.12078 URL |
[39] |
van Veen HW, Venema K, Bolhuis H, et al. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1[J]. PNAS, 1996, 93(20):10668-10672.
pmid: 8855237 |
[40] |
van Veen HW, Margolles A, Müller M, et al. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site(two-cylinder engine)mechanism[J]. EMBO J, 2000, 19(11):2503-2514.
pmid: 10835349 |
[41] | Agboh K, Lau CHF, Khoo YSK, et al. Powering the ABC multidrug exporter LmrA:How nucleotides embrace the ion-motive force[J]. Sci Adv, 2018, 4(9):eaas9365. |
[42] | Steinfels E, Orelle C, Dalmas O, et al. Highly efficient over-production in E. coli of YvcC, a multidrug-like ATP-binding cassette transporter from Bacillus subtilis[J]. Biochim Biophys Acta, 2002, 1565(1):1-5. |
[43] |
Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli[J]. J Bacteriol, 2001, 183(19):5639-5644.
pmid: 11544226 |
[44] |
Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin[J]. PNAS, 1991, 88(19):8553-8557.
pmid: 1924314 |
[45] |
Lubelski J, Mazurkiewicz P, van Merkerk R, et al. ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter[J]. J Biol Chem, 2004, 279(33):34449-34455.
doi: 10.1074/jbc.M404072200 pmid: 15192086 |
[46] |
Agustiandari H, Lubelski J, van den Berg van Saparoea HB, et al. LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis[J]. J Bacteriol, 2008, 190(2):759-763.
doi: 10.1128/JB.01151-07 pmid: 17993533 |
[47] | Torres C, Galián C, Freiberg C, et al. The YheI/YheH heterodimer from Bacillus subtilis is a multidrug ABC transporter[J]. Biochim Biophys Acta, 2009, 1788(3):615-622. |
[48] |
Robertson GT, Doyle TB, Lynch AS. Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents[J]. Antimicrob Agents Chemother, 2005, 49(11):4781-4783.
pmid: 16251330 |
[49] |
Marrer E, Satoh AT, Johnson MM, et al. Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin[J]. Antimicrob Agents Chemother, 2006, 50(1):269-278.
doi: 10.1128/AAC.50.1.269-278.2006 URL |
[50] |
Boncoeur E, Durmort C, Bernay B, et al. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones[J]. Biochemistry, 2012, 51(39):7755-7765.
doi: 10.1021/bi300762p pmid: 22950454 |
[51] |
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity[J]. Protoplasma, 2012, 249(4):919-942.
doi: 10.1007/s00709-011-0360-8 URL |
[52] | 王芝慧. 禾谷镰刀菌ABC蛋白调控铁动态平衡和致病机制的研究[D]. 杭州: 浙江大学, 2019. |
Wang ZH. Regulatory mechanism of ABC proteins in iron homeostasis and pathogenesis of Fusarium graminearum[D]. Hangzhou: Zhejiang University, 2019. | |
[53] | 张媛. 一种ABC转运蛋白基因在水产致病菌变形假单胞菌感染过程中的功能[D]. 厦门: 集美大学, 2018. |
Zhang Y. Function of a ABC transporter gene in theprocess of Pseudomonas plecoglossicida infection by aquatic pathogenic bacteria[D]. Xiamen: Jimei University, 2018. | |
[54] |
Cuthbertson L, Mainprize IL, Naismith JH, et al. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria[J]. Microbiol Mol Biol Rev, 2009, 73(1):155-177.
doi: 10.1128/MMBR.00024-08 URL |
[55] |
Otto M, Götz F. ABC transporters of staphylococci[J]. Res Microbiol, 2001, 152(3/4):351-356.
doi: 10.1016/S0923-2508(01)01206-2 URL |
[56] |
Pavelka MS Jr, Wright LF, Silver RP. Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli K1[J]. J Bacteriol, 1991, 173(15):4603-4610.
pmid: 1856162 |
[57] |
Kroll JS, Loynds B, Brophy LN, et al. The bex locus in encapsulated Haemophilus influenzae:a chromosomal region involved in capsule polysaccharide export[J]. Mol Microbiol, 1990, 4(11):1853-1862.
pmid: 2082145 |
[58] |
Lazarevic V, Karamata D. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids[J]. Mol Microbiol, 1995, 16(2):345-355.
pmid: 7565096 |
[59] |
Schirner K, Stone LK, Walker S. ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers[J]. ACS Chem Biol, 2011, 6(5):407-412.
doi: 10.1021/cb100390w pmid: 21280653 |
[60] |
Gotz F. Staphylococcus and biofilms[J]. Mol Microbiol, 2002, 43(6):1367-1378.
doi: 10.1046/j.1365-2958.2002.02827.x URL |
[61] |
Weidenmaier C, Peschel A, Xiong YQ, et al. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis[J]. J Infect Dis, 2005, 191(10):1771-1777.
doi: 10.1086/429692 URL |
[62] |
Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems[J]. Nat Rev Microbiol, 2009, 7(10):703-714.
doi: 10.1038/nrmicro2218 pmid: 19756009 |
[63] | Saier MH, Ma CH, Rodgers L, et al. Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles[J]. Adv Appl Microbiol, 2008, 65:141-197. |
[64] | Bahl H, Scholz H, Bayan N, et al. Molecular biology of S-layers[J]. FEMS Microbiol Rev, 1997, 20(1/2):47-98. |
[65] |
LaGier MJ, Threadgill DS. Identification of novel genes in the oral pathogen Campylobacter rectus[J]. Oral Microbiol Immunol, 2008, 23(5):406-412.
doi: 10.1111/j.1399-302X.2008.00443.x URL |
[66] |
Thompson SA. Campylobacter surface-layers(S-layers)and immune evasion[J]. Ann Periodontol, 2002, 7(1):43-53.
pmid: 16013216 |
[67] |
Baumann U, Wu S, Flaherty KM, et al. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa:a two-domain protein with a calcium binding parallel beta roll motif[J]. EMBO J, 1993, 12(9):3357-3364.
doi: 10.1002/j.1460-2075.1993.tb06009.x pmid: 8253063 |
[68] |
Linhartová I, Bumba L, Mašín J, et al. RTX proteins:a highly diverse family secreted by a common mechanism[J]. FEMS Microbiol Rev, 2010, 34(6):1076-1112.
doi: 10.1111/j.1574-6976.2010.00231.x pmid: 20528947 |
[69] | 张昕杨. 尿路致病性大肠杆菌溶血素调控因子鉴定及毒力致弱研究[D]. 北京: 中国农业科学院, 2020. |
Zhang XY. Identification of contributing factors to hemolytic activities and their roles in virulence of uropathogenic Escherichia coli[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[70] |
Locher KP, Lee AT, Rees DC. The E. coli BtuCD structure:a framework for ABC transporter architecture and mechanism[J]. Science, 2002, 296(5570):1091-1098.
doi: 10.1126/science.1071142 URL |
[71] |
Kalscheuer R, Syson K, Veeraraghavan U, et al. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway[J]. Nat Chem Biol, 2010, 6(5):376-384.
doi: 10.1038/nchembio.340 pmid: 20305657 |
[72] |
de Veaux LC, Clevenson DS, Bradbeer C, et al. Identification of the btuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli[J]. J Bacteriol, 1986, 167(3):920-927.
pmid: 3528128 |
[73] |
Anderson DS, Adhikari P, Nowalk AJ, et al. The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron[J]. J Bacteriol, 2004, 186(18):6220-6229.
pmid: 15342592 |
[74] |
Shouldice SR, Skene RJ, Dougan DR, et al. Structural basis for iron binding and release by a novel class of periplasmic iron-binding proteins found in gram-negative pathogens[J]. J Bacteriol, 2004, 186(12):3903-3910.
pmid: 15175304 |
[75] |
McAllister LJ, Tseng HJ, Ogunniyi AD, et al. Molecular analysis of the psa permease complex of Streptococcus pneumoniae[J]. Mol Microbiol, 2004, 53(3):889-901.
pmid: 15255900 |
[76] | McDevitt CA, Ogunniyi AD, Valkov E, et al. A molecular mechanism for bacterial susceptibility to zinc[J]. PLoS Pathog, 2011, 7(11): e1002357. |
[1] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[2] | CHEN Yong, LI Ya-xin, WANG Ya-xuan, LIANG Lu-jie, FENG Si-yuan, Tian Guo-bao. Research Progress in the Molecular Mechanism of MCR-1 Mediated Polymyxin Resistance [J]. Biotechnology Bulletin, 2023, 39(6): 102-108. |
[3] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[4] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[5] | MA Fang-fang, LIU Guan-wen, PANG Bing, JIANG Chun-mei, SHI Jun-ling. Strategies of Increasing Flavonoid Production in Engineered Bacteria by Intensifying the Efflux of Flavonoid in Cells [J]. Biotechnology Bulletin, 2023, 39(5): 63-76. |
[6] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[7] | LI Hai-li, LANG Li-min, ZHANG Qing-xian, YOU Yi, ZHU Wen-hao, WANG Zhi-fang, ZHANG Li-xian, WANG Ke-ling. Identification and Drug Resistance of Escherichia coli Simultaneously Producing Carbapenemase NDM-1 and NDM-5 [J]. Biotechnology Bulletin, 2022, 38(9): 106-115. |
[8] | LIU Li-hui, CHU Jin-hua, SUI Yu-xin, CHEN Yang, CHENG Gu-yue. Research Progress of Main Virulence Factors in Salmonella [J]. Biotechnology Bulletin, 2022, 38(9): 72-83. |
[9] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[10] | ZHAO Jing-ya, PENG Meng-ya, ZHANG Shi-yu, SHAN Yi-xuan, XING Xiao-ping, SHI Yan, LI Hai-yang, YANG Xue, LI Hong-lian, CHEN Lin-lin. Role of C2H2 Zinc Finger Transcription Factor FpCzf7 in the Growth and Pathogenicity of Fusarium pseudograminearum [J]. Biotechnology Bulletin, 2022, 38(8): 216-224. |
[11] | ZHU Hao, ZHANG Yan-wei, LIU Run, LIANG Yan, YANG Yi, XU Tian-le, YANG Zhang-ping. Research Progress in Antibiotic Adjuvant and Antibiotics in Antibacterial Aspects [J]. Biotechnology Bulletin, 2022, 38(6): 66-73. |
[12] | TIAN Li, LI Jun-jiao, DAI Xiao-feng, ZHANG Dan-dan, CHEN Jie-yin. From Functional Genes to Biological Characteristics:The Molecular Basis of Pathogenicity in Verticillium dahliae [J]. Biotechnology Bulletin, 2022, 38(1): 51-69. |
[13] | LIU Sha-yu, CAO Jian, LI Meng, LIU Zhi-qiang, LI Xiao-yu. Biological Function of a Zn2Cys6 Transcription Factor CgAswA in Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2021, 37(9): 161-170. |
[14] | LUO Li-li, ZHANG Hao, YANG Mei-xin, WANG Yun-fei, XU Jing-sheng, XU Jin, YAO Qiang, FENG Jie. Temperature-related Pathogenicity Differentiation of Wheat Head Blight in Huang and Huai River Valleys and Northeast China Wheat Regions [J]. Biotechnology Bulletin, 2021, 37(4): 47-55. |
[15] | TIAN Lu, WU Mi, GOU Jing-xuan, GONG Guo-li. Research and Application Progress of Bacteriocin [J]. Biotechnology Bulletin, 2021, 37(4): 224-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||