Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 23-30.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1054
Previous Articles Next Articles
ZHANG Miao1,2(), YANG Lu-lu1,2, JIA Yan-long1,2, WANG Tian-yun2,3()
Received:
2021-08-18
Online:
2022-07-26
Published:
2022-08-09
Contact:
WANG Tian-yun
E-mail:475814252@qq.com;wty@xxmu.edu.cn
ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation[J]. Biotechnology Bulletin, 2022, 38(7): 23-30.
Lysine | H3 tail | H4 tail |
---|---|---|
K4 | Set1,TRX,SET1A,SET1B,MLL1,MLL2,MLL3,MLL4,SMYD1,SMYD2,SMYD3,SET7/9,PRDM9 | - |
K9 | Clr4,SU(VAR)3-9,G9a,SETDB1,ASH1,SUV39H1,SUV39H2,G9a,GLP,PRDM3,PRDM16 | - |
K27 | EZH1,EZH2,G9A | - |
K36 | SET2,MES-4,SETD2,NSD1,NSD2,NSD3,SETD3,SMYD2,ASH1L,SETMAR,PRDM9 | - |
K79 | DOT1L | - |
K20 | - | Set7,SET8,SET9,SUV4-20H1,SUV-20H2,SET9 |
Table 1 Targeting sites of histone methyltransferase and its lysine on histone
Lysine | H3 tail | H4 tail |
---|---|---|
K4 | Set1,TRX,SET1A,SET1B,MLL1,MLL2,MLL3,MLL4,SMYD1,SMYD2,SMYD3,SET7/9,PRDM9 | - |
K9 | Clr4,SU(VAR)3-9,G9a,SETDB1,ASH1,SUV39H1,SUV39H2,G9a,GLP,PRDM3,PRDM16 | - |
K27 | EZH1,EZH2,G9A | - |
K36 | SET2,MES-4,SETD2,NSD1,NSD2,NSD3,SETD3,SMYD2,ASH1L,SETMAR,PRDM9 | - |
K79 | DOT1L | - |
K20 | - | Set7,SET8,SET9,SUV4-20H1,SUV-20H2,SET9 |
[1] |
Borck PC, Guo LW, Plutzky J. BET epigenetic reader proteins in cardiovascular transcriptional programs[J]. Circ Res, 2020, 126(9):1190-1208.
doi: 10.1161/CIRCRESAHA.120.315929 URL |
[2] | 陈香嵩. 组蛋白甲基化与DNA甲基化的相互作用及其表观遗传机制的研究[D]. 武汉: 华中农业大学, 2012. |
Chen XS. Study on interaction and epigenetic inheritance of histone and DNA methylaton[D]. Wuhan: Huazhong Agricultural University, 2012. | |
[3] |
Morgan AE, Davies TJ, Mc Auley MT. The role of DNA methylation in ageing and cancer[J]. Proc Nutr Soc, 2018, 77(4):412-422.
doi: 10.1017/S0029665118000150 pmid: 29708096 |
[4] |
Deaton AM, Bird A. CpG Islands and the regulation of transcription[J]. Genes Dev, 2011, 25(10):1010-1022.
doi: 10.1101/gad.2037511 URL |
[5] | Chen TP. Mechanistic and functional links between histone methylation and DNA methylation[J]. Prog Mol Biol Transl Sci, 2011, 101:335-348. |
[6] |
Luo CY, Hajkova P, Ecker JR. Dynamic DNA methylation:In the right place at the right time[J]. Science, 2018, 361(6409):1336-1340.
doi: 10.1126/science.aat6806 URL |
[7] | 马雪山. 小鼠合子中DNA甲基化和H3K9me2修饰的变化及调控机制研究[D]. 南京: 南京农业大学, 2011. |
Ma XS. The dynamic and regulation mechanism of DNA methylation and H3K9me2 in mouse zygotes[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[8] |
Li HW, Rauch T, Chen ZX, et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells[J]. J Biol Chem, 2006, 281(28):19489-19500.
doi: 10.1074/jbc.M513249200 URL |
[9] |
Desjobert C, El Maï M, Gérard-Hirne T,et al. Combined analysis of DNA methylation and cell cycle in cancer cells[J]. Epigenetics, 2015, 10(1):82-91.
doi: 10.1080/15592294.2014.995542 pmid: 25531272 |
[10] |
Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10):590-607.
doi: 10.1038/s41580-019-0159-6 URL |
[11] |
Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation[J]. Neuron, 2007, 53(6):857-869.
doi: 10.1016/j.neuron.2007.02.022 URL |
[12] | Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation[J]. Biochim Biophys Acta, 2014, 1839(12):1362-1372. |
[13] | 钟焱, 徐慧, 彭凤兰. DNA甲基化在基因表达调控中的意义及研究进展[J]. 中国医药导报, 2019, 16(14):33-36. |
Zhong Y, Xu H, Peng FL. Significance and research progress of DNA methylation in gene expression regulation[J]. China Med Her, 2019, 16(14):33-36. | |
[14] |
Suzuki T, Yamashita S, Ushijima T, et al. Genome-wide analysis of DNA methylation changes induced by gestational arsenic exposure in liver tumors[J]. Cancer Sci, 2013, 104(12):1575-1585.
doi: 10.1111/cas.12298 URL |
[15] |
Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes[J]. Genome Biol, 2013, 14(3):R21.
doi: 10.1186/gb-2013-14-3-r21 URL |
[16] |
Arney KL, Bae E, Olsen C, et al. The human and mouse H19 imprinting control regions harbor an evolutionarily conserved silencer element that functions on transgenes in Drosophila[J]. Dev Genes Evol, 2006, 216(12):811-819.
doi: 10.1007/s00427-006-0102-7 URL |
[17] |
Soda K. Polyamine metabolism and gene methylation in conjunction with one-carbon metabolism[J]. Int J Mol Sci, 2018, 19(10):3106.
doi: 10.3390/ijms19103106 URL |
[18] | Du JM, Johnson LM, Jacobsen SE, et al. DNA methylation pathways and their crosstalk with histone methylation[J]. Nat Rev Mol Cell Biol, 2015, 16(9):519-532. |
[19] | 霍中军, 陈芳, 罗自勉. DNA甲基转移酶3A基因与肿瘤发生的分子调控机制研究进展[J]. 现代肿瘤医学, 2018, 26(20):3325-3329. |
Huo ZJ, Chen F, Luo ZM. Molecular mechanism of DNA methyltransferase 3A and tumorigenesis[J]. J Mod Oncol, 2018, 26(20):3325-3329. | |
[20] |
Wang YZ, Xie YT, Li XF, et al. MiR-876-5p Acts as an inhibitor in hepatocellular carcinoma progression by targeting DNMT3A[J]. Pathol Res Pract, 2018, 214(7):1024-1030.
doi: 10.1016/j.prp.2018.04.012 URL |
[21] |
Jia YL, Guo X, Lu JT, et al. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability[J]. J Cell Mol Med, 2018, 22(9):4106-4116.
doi: 10.1111/jcmm.13687 URL |
[22] | 王佳贤. 利用crispr/cas9技术在CHO细胞和HEK293T细胞中敲除DNMT3a基因及在CHO细胞中定点整合CTLA4Ig基因[D]. 上海: 上海交通大学, 2016. |
Wang JX. Knockout of DNMT3a gene in both CHO and HEK293T cells as well as targeted integration of CTLA4Ig gene in CHO cells via crispr/Cas9 technology[D]. Shanghai: Shanghai Jiaotong University, 2016. | |
[23] |
Bhattacharyya S, Mattiroli F, Luger K. Archaeal DNA on the histone merry-go-round[J]. FEBS J, 2018, 285(17):3168-3174.
doi: 10.1111/febs.14495 pmid: 29729078 |
[24] | Fu WK, Gao L, Huang CF, et al. Mechanisms and importance of histone modification enzymes in targeted therapy for hepatobiliary cancers[J]. Discov Med, 2019, 28(151):17-28. |
[25] | Zhang YJ, Sun ZX, Jia JQ, et al. Overview of histone modification[J]. Adv Exp Med Biol, 2021, 1283:1-16. |
[26] |
Nwasike C, Ewert S, Jovanovic S, et al. SET domain-mediated lysine methylation in lower organisms regulates growth and transcription in hosts[J]. Ann N Y Acad Sci, 2016, 1376(1):18-28.
doi: 10.1111/nyas.13017 URL |
[27] |
Hublitz P, Albert M, Peters AHFM. Mechanisms of transcriptional repression by histone lysine methylation[J]. Int J Dev Biol, 2009, 53(2/3):335-354.
doi: 10.1387/ijdb.082717ph URL |
[28] |
Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics:establishment, regulation, and biological impact[J]. Mol Cell, 2012, 48(4):491-507.
doi: 10.1016/j.molcel.2012.11.006 URL |
[29] |
Hanna CW, Taudt A, Huang J, et al. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes[J]. Nat Struct Mol Biol, 2018, 25(1):73-82.
doi: 10.1038/s41594-017-0014-4 URL |
[30] |
Sasidharan Nair V, El Salhat H, Taha RZ, et al. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer[J]. Clin Epigenetics, 2018, 10:78.
doi: 10.1186/s13148-018-0512-1 pmid: 29983831 |
[31] |
Weinberg DN, Papillon-Cavanagh S, Chen H, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape[J]. Nature, 2019, 573(7773):281-286.
doi: 10.1038/s41586-019-1534-3 URL |
[32] |
Yang HN, Kwon CS, Choi Y, et al. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast[J]. Biochem Biophys Res Commun, 2016, 476(4):515-521.
doi: 10.1016/j.bbrc.2016.05.155 URL |
[33] |
Shailesh H, Zakaria ZZ, Baiocchi R, et al. Protein arginine methyltransferase 5(PRMT5)dysregulation in cancer[J]. Oncotarget, 2018, 9(94):36705-36718.
doi: 10.18632/oncotarget.26404 URL |
[34] |
Izzo A, Schneider R. Chatting histone modifications in mammals[J]. Brief Funct Genomics, 2010, 9(5/6):429-443.
doi: 10.1093/bfgp/elq024 URL |
[35] |
Beacon TH, Xu W, Davie JR. Genomic landscape of transcriptionally active histone arginine methylation marks, H3R2me2s and H4R3me2a, relative to nucleosome depleted regions[J]. Gene, 2020, 742:144593.
doi: 10.1016/j.gene.2020.144593 URL |
[36] |
Qi H, Shi X, Yu M, et al. Sirtuin 7-mediated deacetylation of WD repeat domain 77(WDR77)suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity[J]. J Biol Chem, 2018, 293(46):17769-17779.
doi: 10.1074/jbc.RA118.003629 URL |
[37] |
Majumder S, Alinari L, Roy S, et al. Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription[J]. J Cell Biochem, 2010, 109(3):553-563.
doi: 10.1002/jcb.22432 pmid: 19998411 |
[38] | 孙瑞, 樊红. 组蛋白赖氨酸甲基化修饰与胃癌发病机制相关性的研究进展[J]. 东南大学学报:医学版, 2019, 38(3):536-540. |
Sun R, Fan H. Research progress on the correlation between histone lysine methylation and the pathogenesis of gastric cancer[J]. J Southeast Univ:Med Sci Ed, 2019, 38(3):536-540. | |
[39] |
Jih G, Iglesias N, Currie MA, et al. Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription[J]. Nature, 2017, 547(7664):463-467.
doi: 10.1038/nature23267 URL |
[40] |
Vavouri T, Lehner B. Human genes with CpG island promoters have a distinct transcription-associated chromatin organization[J]. Genome Biol, 2012, 13(11):R110.
doi: 10.1186/gb-2012-13-11-r110 URL |
[41] |
Towbin BD, González-Aguilera C, Sack R, et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery[J]. Cell, 2012, 150(5):934-947.
doi: 10.1016/j.cell.2012.06.051 URL |
[42] |
Brower-Toland B, Riddle NC, Jiang H, et al. Multiple SET methyltransferases are required to maintain normal heterochromatin domains in the genome of Drosophila melanogaster[J]. Genetics, 2009, 181(4):1303-1319.
doi: 10.1534/genetics.108.100271 pmid: 19189944 |
[43] | Hyun K, Jeon J, Park K, et al. Writing, erasing and reading histone lysine methylations[J]. Exp Mol Med, 2017, 49(4):e324. |
[44] |
Shuai WD, Wu JX, Chen S, et al. SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter[J]. Cancer Lett, 2018, 422:56-69.
doi: 10.1016/j.canlet.2018.02.023 URL |
[45] |
Muramatsu D, Singh PB, Kimura H, et al. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1[J]. J Biol Chem, 2013, 288(35):25285-25296.
doi: 10.1074/jbc.M113.470724 pmid: 23836914 |
[46] |
van Wijnen AJ, Bagheri L, Badreldin AA, et al. Biological functions of chromobox(CBX)proteins in stem cell self-renewal, lineage-commitment, cancer and development[J]. Bone, 2021, 143:115659.
doi: 10.1016/j.bone.2020.115659 URL |
[47] |
Maksimov DA, Koryakov DE. Binding of SU(VAR)3-9 partially depends on SETDB1 in the chromosomes of Drosophila melanogaster[J]. Cells, 2019, 8(9):1030.
doi: 10.3390/cells8091030 URL |
[48] |
Crawford NT, McIntyre AJ, McCormick A, et al. TBX2 interacts with heterochromatin protein 1 to recruit a novel repression complex to EGR1-targeted promoters to drive the proliferation of breast cancer cells[J]. Oncogene, 2019, 38(31):5971-5986.
doi: 10.1038/s41388-019-0853-z pmid: 31253870 |
[49] |
Hwang YJ, Han D, Kim KY, et al. ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription[J]. Nucleic Acids Res, 2014, 42(3):1628-1643.
doi: 10.1093/nar/gkt1041 pmid: 24234436 |
[50] |
Casciello F, Al-Ejeh F, Kelly G, et al. G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis[J]. PNAS, 2017, 114(27):7077-7082.
doi: 10.1073/pnas.1618706114 URL |
[51] |
Ferry L, Fournier A, Tsusaka T, et al. Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation[J]. Mol Cell, 2017, 67(4):550-565. e5.
doi: 10.1016/j.molcel.2017.07.012 URL |
[52] | 刘婉莹, 陈佳琪, 杨帆, 等. 组蛋白H3赖氨酸位点甲基化修饰对骨骼肌细胞分化的调控作用[J]. 医学信息, 2020, 33(7):24-28. |
Liu WY, Chen JQ, Yang F, et al. Regulation effect of methylation modification of histone H3 lysine on skeletal muscle cell differentiation[J]. Med Inf, 2020, 33(7):24-28. | |
[53] |
Xie LL, Lin L, Huang SH, et al. Inhibition of Suv39H1 enhances transgenic IFNα-2b gene expression in Bcap-37 cells[J]. Anim Biotechnol, 2019, 30(4):358-365.
doi: 10.1080/10495398.2018.1500373 URL |
[54] |
Blagitko-Dorfs N, Schlosser P, Greve G, et al. Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors:predominant synergistic gene downregulation associated with gene body demethylation[J]. Leukemia, 2019, 33(4):945-956.
doi: 10.1038/s41375-018-0293-8 pmid: 30470836 |
[55] |
Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly[J]. Mol Cell, 2004, 15(4):595-605.
doi: 10.1016/j.molcel.2004.06.043 URL |
[56] |
Takada I, Mihara M, Suzawa M, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation[J]. Nat Cell Biol, 2007, 9(11):1273-1285.
doi: 10.1038/ncb1647 URL |
[57] |
Dong CF, Wu YD, Yao J, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer[J]. J Clin Invest, 2012, 122(4):1469-1486.
doi: 10.1172/JCI57349 URL |
[58] |
Chen MW, Hua KT, Kao HJ, et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM[J]. Cancer Res, 2010, 70(20):7830-7840.
doi: 10.1158/0008-5472.CAN-10-0833 URL |
[59] |
Hashimoto H, Vertino PM, Cheng X. Molecular coupling of DNA methylation and histone methylation[J]. Epigenomics, 2010, 2(5):657-669.
pmid: 21339843 |
[60] | 沈松菲. 急性白血病组蛋白甲基化和DNA甲基化的相互作用及对Wnt信号通路的调控研究[D]. 福州: 福建医科大学, 2011. |
Shen SF. Research on the interactions between histone and DNA methylation in acute leukemia and the regulation of wnt signal pathway[D]. Fuzhou: Fujian Medical University, 2011. | |
[61] |
Minkovsky A, Sahakyan A, Rankin-Gee E, et al. The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation[J]. Epigenetics Chromatin, 2014, 7:12.
doi: 10.1186/1756-8935-7-12 pmid: 25028596 |
[62] | Gessaman JD, Selker EU. Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa[J]. PNAS, 2017, 114(45):E9598-E9607. |
[63] |
Chang YQ, Sun LD, Kokura K, et al. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a[J]. Nat Commun, 2011, 2:533.
doi: 10.1038/ncomms1549 URL |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[4] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[5] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[6] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[7] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[8] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[9] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[10] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[11] | REN Li, QIAO Shu-ting, GE Chen-hui, WEI Zi-tong, XU Chen-xi. Identification and Expression Analysis of Spinach PSY Gene Family [J]. Biotechnology Bulletin, 2023, 39(12): 169-178. |
[12] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[13] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[14] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[15] | YUAN Xing, GUO Cai-hua, LIU Jin-ming, KANG Chao, QUAN Shao-wen, NIU Jian-xin. Genome-wide Identification of CONSTANS-Like Family Genes and Expression Analysis in Wanlut [J]. Biotechnology Bulletin, 2022, 38(9): 167-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||