Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1345
WANG Nan-nan(), WANG Wen-jia, ZHU Qiang()
Received:
2021-10-27
Online:
2022-08-26
Published:
2022-09-14
Contact:
ZHU Qiang
E-mail:nnwang@fafu.edu.cn;zhuqiang@fafu.edu.cn
WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses[J]. Biotechnology Bulletin, 2022, 38(8): 1-11.
[1] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[2] |
Reinhart BJ, Weinstein EG, Rhoades MW, et al. microRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626.
doi: 10.1101/gad.1004402 URL |
[3] |
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:from microRNA sequences to function[J]. Nucleic Acids Res, 2019, 47(D1):D155-D162.
doi: 10.1093/nar/gky1141 |
[4] |
黄俊骏, 刘文文, 郭亚如, 等. microRNA在植物生长发育中的研究进展[J]. 生物技术通报, 2019, 35(11):141-149.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0526 |
Huang JJ, Liu WW, Guo YR, et al. Research progress of microRNA in plant development[J]. Biotechnol Bull, 2019, 35(11):141-149. | |
[5] | 郁佳雯, 韩荣鹏, 仇婷, 等. microRNA在植物生长发育中的研究进展[J]. 分子植物育种, 2020, 18(5):1496-1504. |
Yu JW, Han RP, Qiu T, et al. Research progress on microRNA in plant growth and development[J]. Mol Plant Breed, 2020, 18(5):1496-1504. | |
[6] |
Kim YJ, Zheng BL, Yu Y, et al. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana[J]. EMBO J, 2011, 30(5):814-822.
doi: 10.1038/emboj.2011.3 URL |
[7] |
Wang LL, Song XW, Gu LF, et al. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis[J]. Plant Cell, 2013, 25(2):715-727.
doi: 10.1105/tpc.112.105882 URL |
[8] |
Zhang SX, Xie M, Ren GD, et al. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts[J]. Proc Natl Acad Sci USA, 2013, 110(43):17588-17593.
doi: 10.1073/pnas.1310644110 URL |
[9] |
Fang XF, Cui YW, Li YX, et al. Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis[J]. Nat Plants, 2015, 1:15075.
doi: 10.1038/nplants.2015.75 URL |
[10] |
Hajheidari M, Farrona S, Huettel B, et al. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II[J]. Plant Cell, 2012, 24(4):1626-1642.
doi: 10.1105/tpc.112.096834 URL |
[11] |
Fukudome A, Fukuhara T. Plant dicer-like proteins:double-stranded RNA-cleaving enzymes for small RNA biogenesis[J]. J Plant Res, 2017, 130(1):33-44.
doi: 10.1007/s10265-016-0877-1 pmid: 27885504 |
[12] |
Yang X, Ren WQ, Zhao QX, et al. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA[J]. Nucleic Acids Res, 2014, 42(19):12224-12236.
doi: 10.1093/nar/gku907 pmid: 25294831 |
[13] |
Laubinger S, Sachsenberg T, Zeller G, et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2008, 105(25):8795-8800.
doi: 10.1073/pnas.0802493105 URL |
[14] |
Yang ZY, Ebright YW, Yu B, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide[J]. Nucleic Acids Res, 2006, 34(2):667-675.
doi: 10.1093/nar/gkj474 URL |
[15] |
Huang Y, Ji LJ, Huang QC, et al. Structural insights into mechanisms of the small RNA methyltransferase HEN1[J]. Nature, 2009, 461(7265):823-827.
doi: 10.1038/nature08433 URL |
[16] |
Iki T, Yoshikawa M, Nishikiori M, et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90[J]. Mol Cell, 2010, 39(2):282-291.
doi: 10.1016/j.molcel.2010.05.014 URL |
[17] |
Park MY, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proc Natl Acad Sci USA, 2005, 102(10):3691-3696.
doi: 10.1073/pnas.0405570102 URL |
[18] |
Bologna NG, Iselin R, Abriata LA, et al. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway[J]. Mol Cell, 2018, 69(4):709-719. e5.
doi: 10.1016/j.molcel.2018.01.007 URL |
[19] |
Chen XM. microRNA biogenesis and function in plants[J]. FEBS Lett, 2005, 579(26):5923-5931.
doi: 10.1016/j.febslet.2005.07.071 URL |
[20] |
Li SB, Liu L, Zhuang XH, et al. microRNAs inhibit the translation of target mRNAs on the endoplasmic Reticulum in Arabidopsis[J]. Cell, 2013, 153(3):562-574.
doi: 10.1016/j.cell.2013.04.005 URL |
[21] |
Yu Y, Jia TR, Chen XM. The ‘how’ and ‘where’ of plant microRNAs[J]. New Phytol, 2017, 216(4):1002-1017.
doi: 10.1111/nph.14834 pmid: 29048752 |
[22] |
Kang T, Yu CY, Liu Y, et al. Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants[J]. Front Plant Sci, 2020, 10:1664.
doi: 10.3389/fpls.2019.01664 URL |
[23] | López-Galiano MJ, García-Robles I, González-Hernández AI, et al. Expression of miR159 is altered in tomato plants undergoing drought stress[J]. Plants(Basel), 2019, 8(7):201. |
[24] |
Cui LG, Shan JX, Shi M, et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. Plant J, 2014, 80(6):1108-1117.
doi: 10.1111/tpj.12712 URL |
[25] |
Feyissa BA, Arshad M, Gruber MY, et al. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa[J]. BMC Plant Biol, 2019, 19:434.
doi: 10.1186/s12870-019-2059-5 pmid: 31638916 |
[26] |
Wang YM, Liu WW, Wang XW, et al. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar[J]. Hortic Res, 2020, 7:118.
doi: 10.1038/s41438-020-00341-w URL |
[27] |
Liu X, Dong XF, Liu ZH, et al. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss[J]. Plant Mol Biol, 2016, 92(3):313-336.
doi: 10.1007/s11103-016-0514-3 URL |
[28] |
Yuan WY, Suo JQ, et al. The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance[J]. Plant Physiol Biochem, 2019, 142:303-311.
doi: 10.1016/j.plaphy.2019.07.021 URL |
[29] |
Zhao JM, Yuan SR, Zhou M, et al. Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance[J]. Plant Biotechnol J, 2019, 17(1):233-251.
doi: 10.1111/pbi.12960 URL |
[30] |
Visentin I, Pagliarani C, Deva E, et al. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery[J]. Plant Cell Environ, 2020, 43(7):1613-1624.
doi: 10.1111/pce.13758 URL |
[31] |
Zhou YG, Liu WC, Li XW, et al. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean[J]. BMC Plant Biol, 2020, 20(1):190.
doi: 10.1186/s12870-020-02370-y URL |
[32] |
Kinoshita N, Wang H, Kasahara H, et al. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress[J]. Plant Cell, 2012, 24(9):3590-3602.
doi: 10.1105/tpc.112.097006 URL |
[33] |
Yang TX, Wang YY, et al. The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis[J]. Sci Rep, 2019, 9(1):2832.
doi: 10.1038/s41598-019-39397-7 URL |
[34] |
Hang N, Shi TR, Liu YR, et al. Overexpression of Os-microRNA408 enhances drought tolerance in perennial ryegrass[J]. Physiol Plant, 2021, 172(2):733-747.
doi: 10.1111/ppl.13276 pmid: 33215699 |
[35] |
Song JB, Gao S, Sun D, et al. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner[J]. BMC Plant Biol, 2013, 13:210.
doi: 10.1186/1471-2229-13-210 URL |
[36] |
Guo XR, Niu JF, et al. Heterologous expression of Salvia miltior-rhiza microRNA408 enhances tolerance to salt stress in Nicotiana benthamiana[J]. Int J Mol Sci, 2018, 19(12):3985.
doi: 10.3390/ijms19123985 URL |
[37] |
Liu YR, Li DY, Yan JP, et al. MiR319 mediated salt tolerance by ethylene[J]. Plant Biotechnol J, 2019, 17(12):2370-2383.
doi: 10.1111/pbi.13154 URL |
[38] |
Yuan SR, Li ZG, Li DY, et al. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass[J]. Plant Physiol, 2015, 169(1):576-593.
doi: 10.1104/pp.15.00899 URL |
[39] |
Yuan SR, Zhao JM, Li ZG, et al. microRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J]. Hortic Res, 2019, 6:48.
doi: 10.1038/s41438-019-0130-x URL |
[40] |
Ma Y, Xue H, Zhang F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnol J, 2021, 19(2):311-323.
doi: 10.1111/pbi.13464 URL |
[41] |
Wang ST, Sun XL, Hoshino Y, et al. microRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L.)[J]. PLoS One, 2014, 9(3):e91357.
doi: 10.1371/journal.pone.0091357 URL |
[42] |
Bustamante A, Marques MC, Sanz-Carbonell A, et al. Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold[J]. Sci Rep, 2018, 8(1):15538.
doi: 10.1038/s41598-018-34012-7 pmid: 30341377 |
[43] |
Shi XP, Jiang FL, Wen JQ, et al. Overexpression of Solanum habrochaites microRNA319d(Sha-miR319d)confers chilling and heat stress tolerance in tomato(S. lycopersicum)[J]. BMC Plant Biol, 2019, 19(1):214.
doi: 10.1186/s12870-019-1823-x URL |
[44] |
Tang W, Thompson WA. OsmiR528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells[J]. Curr Genomics, 2019, 20(2):100-114.
doi: 10.2174/1389202920666190129145439 pmid: 31555061 |
[45] |
Zhu H, Chen CJ, Zeng J, et al. microRNA528, a hub regulator modulating ROS homeostasis via targeting of a diverse set of genes encoding copper-containing proteins in monocots[J]. New Phytol, 2020, 225(1):385-399.
doi: 10.1111/nph.16130 URL |
[46] |
Zhou MQ, Tang W. microRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells[J]. Mol Genet Genomics, 2019, 294(2):379-393.
doi: 10.1007/s00438-018-1516-4 URL |
[47] |
Matthews C, Arshad M, Hannoufa A. Alfalfa response to heat stress is modulated by microRNA156[J]. Physiol Plant, 2019, 165(4):830-842.
doi: 10.1111/ppl.12787 pmid: 29923601 |
[48] |
Arshad M, Puri A, Simkovich AJ, et al. Label-free quantitative proteomic analysis of alfalfa in response to microRNA156 under high temperature[J]. BMC Genomics, 2020, 21(1):758.
doi: 10.1186/s12864-020-07161-1 URL |
[49] |
Wang Y, Sun FL, Cao H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response[J]. PLoS One, 2012, 7(11):e48445.
doi: 10.1371/journal.pone.0048445 URL |
[50] |
Ahmed W, Xia YS, Zhang H, et al. Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing[J]. Sci Rep, 2019, 9(1):14922.
doi: 10.1038/s41598-019-51443-y URL |
[51] |
Ding YH, Ma YZ, et al. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton(Gossypium hirsutum)[J]. Plant J, 2017, 91(6):977-994.
doi: 10.1111/tpj.13620 URL |
[52] |
Li LJ, Li Q, Davis KE, et al. Response of root growth and development to nitrogen and potassium deficiency as well as microRNA-mediated mechanism in peanut(Arachis hypogaea L.)[J]. Front Plant Sci, 2021, 12:695234.
doi: 10.3389/fpls.2021.695234 URL |
[53] |
Lei KJ, Lin YM, Ren J, et al. Modulation of the phosphate-deficient responses by microrna156 and its targeted Squamosa promoter binding protein-like 3 in Arabidopsis[J]. Plant Cell Physiol, 2016, 57(1):192-203.
doi: 10.1093/pcp/pcv197 URL |
[54] | Hu B, Wang W, Deng K, et al. microRNA399 is involved in multiple nutrient starvation responses in rice[J]. Front Plant Sci, 2015, 6:188. |
[55] |
Du QG, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiol, 2018, 177(4):1743-1753.
doi: 10.1104/pp.18.00034 URL |
[56] |
Yuan N, Yuan SR, Li ZG, et al. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis[J]. Sci Rep, 2016, 6:28791.
doi: 10.1038/srep28791 URL |
[57] |
Li LH, Yi HL, Xue MZ, et al. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana[J]. Ecotoxicology, 2017, 26(9):1181-1187.
doi: 10.1007/s10646-017-1843-y URL |
[58] |
Meng JG, Zhang XD, Tan SK, et al. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus[J]. Biometals, 2017, 30(6):917-931.
doi: 10.1007/s10534-017-0057-3 pmid: 28993932 |
[59] |
Zhang L, Ding H, Jiang HL, et al. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis[J]. Chemosphere, 2020, 242:125168.
doi: 10.1016/j.chemosphere.2019.125168 URL |
[60] | Bai B, Bian HW, Zeng ZH, et al. miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley[J]. Plant Cell Physiol, 2017, 58(3):426-439. |
[61] |
Leng XP, et al. Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance[J]. Funct Integr Genomics, 2017, 17(6):697-710.
doi: 10.1007/s10142-017-0565-9 URL |
[62] | Caruana JC, Dhar N, Raina R. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8[J]. Plant Direct, 2020, 4(9):e00270. |
[63] |
Hanemian M, Barlet X, Sorin C, et al. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway[J]. New Phytol, 2016, 211(2):502-515.
doi: 10.1111/nph.13913 pmid: 26990325 |
[64] | Li Y, Zhao SL, Li JL, et al. Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Front Plant Sci, 2017, 8:2. |
[65] |
Song S, Xu Y, Huang DM, et al. Identification and characterization of miRNA169 family members in banana(Musa acuminata L.)that respond to Fusarium oxysporum f. sp. cubense infection in banana cultivars[J]. PeerJ, 2018, 6:e6209.
doi: 10.7717/peerj.6209 URL |
[66] |
Lee MH, Jeon HS, Kim HG, et al. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J]. New Phytol, 2017, 214(1):343-360.
doi: 10.1111/nph.14371 URL |
[67] | Wang Z, Xia Y, Lin S, et al. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Plant J, 2018: 2018 May 18. |
[68] |
Hu G, Lei Y, Liu JF, et al. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium Dahlia[J]. Plant Sci, 2020, 293:110438.
doi: 10.1016/j.plantsci.2020.110438 URL |
[69] |
Tomkowiak A, Jędrzejewski T, Spychała J, et al. Analysis of miRNA expression associated with the Lr46 gene responsible for APR resistance in wheat(Triticum aestivum L.)[J]. J Appl Genet, 2020, 61(4):503-511.
doi: 10.1007/s13353-020-00573-5 URL |
[70] |
Chen SS, Wu JD, Zhang YF, et al. Genome-wide analysis of coding and non-coding RNA reveals a conserved miR164-NAC-mRNA regulatory pathway for disease defense in Populus[J]. Front Genet, 2021, 12:668940.
doi: 10.3389/fgene.2021.668940 URL |
[71] |
Zhao WC, Li ZL, Fan JW, et al. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J]. J Exp Bot, 2015, 66(15):4653-4667.
doi: 10.1093/jxb/erv238 URL |
[72] |
Zhang X, Bao YL, Shan DQ, et al. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice[J]. Plant Physiol, 2018, 177(1):352-368.
doi: 10.1104/pp.17.01665 pmid: 29549093 |
[73] |
Fan D, Ran LY, Hu J, et al. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa[J]. New Phytol, 2020, 227(3):867-883.
doi: 10.1111/nph.16585 pmid: 32270484 |
[74] | Chand SK, Nanda S, Joshi RK. Regulation of miR394 in response to Fusarium oxysporum f. sp. cepae(FOC)infection in garlic (Allium sativum L)[J]. Front Plant Sci, 2016, 7:258. |
[75] |
Tian X, Song LP, Wang Y, et al. miR394 acts as a negative regulator of Arabidopsis resistance to B. cinerea infection by targeting LCR[J]. Front Plant Sci, 2018, 9:903.
doi: 10.3389/fpls.2018.00903 URL |
[76] |
Zhang YY, Hong YH, Liu YR, et al. Function identification of miR394 in tomato resistance to Phytophthora infestans[J]. Plant Cell Rep, 2021, 40(10):1831-1844.
doi: 10.1007/s00299-021-02746-w URL |
[77] |
Soto-Suárez M, Baldrich P, et al. The Arabidopsis m mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens[J]. Sci Rep, 2017, 7:44898.
doi: 10.1038/srep44898 pmid: 28332603 |
[78] |
Chandran V, Wang H, Gao F, et al. miR396- OsGRFs module balances growth and rice blast disease-resistance[J]. Front Plant Sci, 2019, 9:1999.
doi: 10.3389/fpls.2018.01999 URL |
[79] |
Dai ZY, Tan J, Zhou C, et al. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice(Oryza sativa)[J]. Plant Biotechnol J, 2019, 17(8):1657-1669.
doi: 10.1111/pbi.13091 URL |
[80] | Zhang QL, Li Y, Zhang Y, et al. Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease[J]. Front Plant Sci, 2017, 8:526. |
[81] |
Wu JG, et al. ROS accumulation and antiviral defence control by microRNA528 in rice[J]. Nat Plants, 2017, 3:16203.
doi: 10.1038/nplants.2016.203 URL |
[82] |
Yao SZ, Yang ZR, Yang RX, et al. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice[J]. Mol Plant, 2019, 12(8):1114-1122.
doi: 10.1016/j.molp.2019.04.010 URL |
[83] |
Ding D, Zhang LF, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Ann Bot, 2009, 103(1):29-38.
doi: 10.1093/aob/mcn205 URL |
[84] | Gentile A, Dias LI, Mattos RS, et al. microRNAs and drought responses in sugarcane[J]. Front Plant Sci, 2015, 6:58. |
[85] |
Khraiwesh B, Zhu JK, Zhu JH. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta, 2012, 1819(2):137-148.
doi: 10.1016/j.bbagrm.2011.05.001 pmid: 21605713 |
[86] |
Gubler F, Raventos D, Keys M, et al. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone[J]. Plant J, 1999, 17(1):1-9.
pmid: 10069063 |
[87] |
Aya K, Ueguchi-Tanaka M, Kondo M, et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. Plant Cell, 2009, 21(5):1453-1472.
doi: 10.1105/tpc.108.062935 URL |
[88] |
Alonso-Peral MM, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis[J]. Plant Physiol, 2010, 154(2):757-771.
doi: 10.1104/pp.110.160630 pmid: 20699403 |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[3] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[4] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[5] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[6] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[7] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[8] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[9] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[10] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[11] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[12] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[13] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[14] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[15] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||