Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 150-158.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1414
Previous Articles Next Articles
Received:
2021-11-12
Online:
2022-08-26
Published:
2022-09-14
Contact:
SONG Li
E-mail:bhguo@yzu.edu.cn;songli@yzu.edu.cn
GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection[J]. Biotechnology Bulletin, 2022, 38(8): 150-158.
基因名称Gene name | 基因 ID Gene ID | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|---|
GmACS#009 | Glyma.07G065700 | ATGTGAGCGTTGCTGAAGTG | AAGCCAGGGTACCCCATATC |
GmACS#018 | Glyma.16G032200 | TAAGGACATGGGGTTTCCTG | TCCGAAACTCGACATTTTCC |
GmACS#014 | Glyma.09G255000 | CTTGAAGGGTTTGCTGAAGG | CTGACCCTGGTGACACATTG |
GmACS#021 | Glyma.18G238100 | TCATGGATTGCCAGAGTTCA | CCCCACTCATCAAAATACGG |
GmACS#007 | Glyma.05G211700 | GGGTGGTTTAGGGTGTGCTA | GGCACCATGATCTCCTTGTT |
GmACS#011 | Glyma.08G018000 | CTGGCTCTTCTTTCCATTGC | CGAAGGTTCGAATTCTTTGC |
GmACS#015 | Glyma.11G021500 | GCGACGAAATATACGCTGGT | ATAAGGTCGCGGTCACATTC |
GmACS#005 | Glyma.05G108900 | CGTATCGGGGCTATTGAAAA | GAACGTGTTCGAATGCAAAA |
GmACS#020 | Glyma.17G158100 | TACCTCCTCTCTGCCATGCT | CCGAAACGAGCATTTTCTGT |
GmEIN#001 | Glyma.02G274600 | CAAAGCCCTCCACCTTACAA | TTGGCAATATCAGGGGACAT |
GmEIN#005 | Glyma.13G076800 | TTGGGATGGAAAGAGTGAGG | CCTCTTCCGAATGAAATCCA |
GmEIN#006 | Glyma.13G076700 | CAAAATTTGCAAGCTCGTGA | TGCCAAGTCCTCCTCTTGAT |
GmEIN#008 | Glyma.14G041500 | TATGATGTTGATGGGGCTGA | CATTCTCTCCATCCCAAGG |
GmEIN#010 | Glyma.20G051500 | CAGAGAAGGGAAAGCCAGTG | GTTATGGCAGCAGGACCATT |
GmEIN#007 | Glyma.13G145100 | GGCATCATTGATCTGGCTTT | GGAGGTGAGCCTGACTTCTG |
GmACT11 | Glyma.18G290800 | ATCTTGACTGAGCGTGGTTATTCC | GCTGGTCCTGGCTGTCTCC |
Table 1 Ethylene related genes and their RT-qPCR primer sequences
基因名称Gene name | 基因 ID Gene ID | 正向引物Forward primer | 反向引物Reverse primer |
---|---|---|---|
GmACS#009 | Glyma.07G065700 | ATGTGAGCGTTGCTGAAGTG | AAGCCAGGGTACCCCATATC |
GmACS#018 | Glyma.16G032200 | TAAGGACATGGGGTTTCCTG | TCCGAAACTCGACATTTTCC |
GmACS#014 | Glyma.09G255000 | CTTGAAGGGTTTGCTGAAGG | CTGACCCTGGTGACACATTG |
GmACS#021 | Glyma.18G238100 | TCATGGATTGCCAGAGTTCA | CCCCACTCATCAAAATACGG |
GmACS#007 | Glyma.05G211700 | GGGTGGTTTAGGGTGTGCTA | GGCACCATGATCTCCTTGTT |
GmACS#011 | Glyma.08G018000 | CTGGCTCTTCTTTCCATTGC | CGAAGGTTCGAATTCTTTGC |
GmACS#015 | Glyma.11G021500 | GCGACGAAATATACGCTGGT | ATAAGGTCGCGGTCACATTC |
GmACS#005 | Glyma.05G108900 | CGTATCGGGGCTATTGAAAA | GAACGTGTTCGAATGCAAAA |
GmACS#020 | Glyma.17G158100 | TACCTCCTCTCTGCCATGCT | CCGAAACGAGCATTTTCTGT |
GmEIN#001 | Glyma.02G274600 | CAAAGCCCTCCACCTTACAA | TTGGCAATATCAGGGGACAT |
GmEIN#005 | Glyma.13G076800 | TTGGGATGGAAAGAGTGAGG | CCTCTTCCGAATGAAATCCA |
GmEIN#006 | Glyma.13G076700 | CAAAATTTGCAAGCTCGTGA | TGCCAAGTCCTCCTCTTGAT |
GmEIN#008 | Glyma.14G041500 | TATGATGTTGATGGGGCTGA | CATTCTCTCCATCCCAAGG |
GmEIN#010 | Glyma.20G051500 | CAGAGAAGGGAAAGCCAGTG | GTTATGGCAGCAGGACCATT |
GmEIN#007 | Glyma.13G145100 | GGCATCATTGATCTGGCTTT | GGAGGTGAGCCTGACTTCTG |
GmACT11 | Glyma.18G290800 | ATCTTGACTGAGCGTGGTTATTCC | GCTGGTCCTGGCTGTCTCC |
Fig.2 Root staining after SCN(race 3)infecting soybean Magellan variety A:2 d after inoculation;B:4 d after inoculation;C:6 d after inoculation;D and E:8 d after inoculation. Scal bar:A-D:0.5 mm, E:1 mm
[1] |
Gheysen G, Mitchum MG. How Nematodes manipulate plant development pathways for infection[J]. Curr Opin Plant Biol, 2011, 14(4):415-421.
doi: 10.1016/j.pbi.2011.03.012 URL |
[2] |
Studham ME, MacIntosh GC. Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions[J]. BMC Res Notes, 2012, 5:392.
doi: 10.1186/1756-0500-5-392 URL |
[3] |
Dyer S, Weir R, Cox D, et al. Ethylene Response Factor(ERF)genes modulate plant root exudate composition and the attraction of plant parasitic Nematodes[J]. Int J Parasitol, 2019, 49(13/14):999-1003.
doi: 10.1016/j.ijpara.2019.09.001 URL |
[4] |
Dahl CC, Baldwin IT. Deciphering the role of ethylene in plant-herbivore interactions[J]. J Plant Growth Regul, 2007, 26(2):201-209.
doi: 10.1007/s00344-007-0014-4 URL |
[5] |
Glazer I, Apelbaum A, Orion D. Effect of inhibitors and stimulators of ethylene production on gall development in Meloidogyne javanica-infected tomato roots[J]. J Nematol, 1985, 17(2):145-149.
pmid: 19294073 |
[6] |
Tucker ML, Xue P, Yang RH. 1-Aminocyclopropane-1-carboxylic acid(ACC)concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode(Heterodera glycines)-infected roots[J]. J Exp Bot, 2010, 61(2):463-472.
doi: 10.1093/jxb/erp317 pmid: 19861652 |
[7] |
Fudali SL, Wang CL, Williamson VM. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla[J]. Mol Plant Microbe Interact, 2013, 26(1):75-86.
doi: 10.1094/MPMI-05-12-0107-R URL |
[8] |
Hu YF, You J, Li CJ, et al. Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines[J]. Sci Rep, 2017, 7:41282.
doi: 10.1038/srep41282 URL |
[9] |
Wubben MJ 2nd, Su H, Rodermel SR, et al. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana[J]. Mol Plant Microbe Interact, 2001, 14(10):1206-1212.
doi: 10.1094/MPMI.2001.14.10.1206 URL |
[10] |
Wubben MJEI, Rodermel SR, Baum TJ. Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots[J]. Plant J, 2004, 40(5):712-724.
doi: 10.1111/j.1365-313X.2004.02257.x URL |
[11] |
Bent AF, Hoffman TK, Schmidt JS, et al. Disease- and performance-related traits of ethylene-insensitive soybean[J]. Crop Sci, 2006, 46(2):893-901.
doi: 10.2135/cropsci2005.08-0235 URL |
[12] |
Kammerhofer N, Radakovic Z, Regis JMA, et al. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis[J]. New Phytol, 2015, 207(3):778-789.
doi: 10.1111/nph.13395 pmid: 25825039 |
[13] |
Puthoff DP, Ehrenfried ML, Vinyard BT, et al. GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots[J]. J Exp Bot, 2007, 58(12):3407-3418.
pmid: 17977850 |
[14] |
Wan JR, Vuong T, Jiao YQ, et al. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode(Heterodera glycines Ichinohe)[J]. BMC Genomics, 2015, 16(1):148.
doi: 10.1186/s12864-015-1316-8 URL |
[15] |
Mazarei M, Puthoff DP, Hart JK, et al. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection[J]. Mol Plant Microbe Interact, 2002, 15(6):577-586.
doi: 10.1094/MPMI.2002.15.6.577 URL |
[16] |
Li S, Chen Y, Zhu XF, et al. The transcriptomic changes of Huipizhi Heidou(Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection[J]. J Plant Physiol, 2018, 220:96-104.
doi: 10.1016/j.jplph.2017.11.001 URL |
[17] |
孙梦婷, 范晓蕾, 郭荣波, 等. 生物乙烯研究进展[J]. 生物技术通报, 2016, 32(2):38-45.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.004 |
Sun MT, Fan XL, Guo RB, et al. Research progress on bio-ethylene[J]. Biotechnol Bull, 2016, 32(2):38-45. | |
[18] | 史庆玲, 李忠峰, 董永彬, 等. 植物乙烯信号转导通路及其相关基因的研究进展[J]. 生物技术进展, 2019, 9(5):449-454. |
Shi QL, Li ZF, Dong YB, et al. Progress on ethylene signal transduction pathway and related genes in plants[J]. Curr Biotechnol, 2019, 9(5):449-454. | |
[19] |
Bybd DW, Kirkpatrick T, Barker KR. An improved technique for clearing and staining plant tissues for detection of Nematodes[J]. J Nematol, 1983, 15(1):142-143.
pmid: 19295781 |
[20] |
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers[J]. Methods Mol Biol, 2000, 132:365-386.
pmid: 10547847 |
[21] |
Arraes FBM, Beneventi MA, Lisei de Sa ME, et al. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance[J]. BMC Plant Biol, 2015, 15:213.
doi: 10.1186/s12870-015-0597-z URL |
[22] |
Mitchum MG. Soybean resistance to the soybean cyst nematode Heterodera glycines:an update[J]. Phytopathology, 2016, 106(12):1444-1450.
doi: 10.1094/PHYTO-06-16-0227-RVW URL |
[23] |
Ithal N, Recknor J, Nettleton D, et al. Developmental transcript profiling of cyst nematode feeding cells in soybean roots[J]. Mol Plant Microbe Interact, 2007, 20(5):510-525.
doi: 10.1094/MPMI-20-5-0510 URL |
[24] |
Miraeiz E, Chaiprom U, Afsharifar A, et al. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans[J]. Theor Appl Genet, 2020, 133(1):87-102.
doi: 10.1007/s00122-019-03442-w URL |
[25] |
Ali MA, Abbas A, Kreil DP, et al. Overexpression of the transcription factor RAP2. 6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots[J]. BMC Plant Biol, 2013, 13:47.
doi: 10.1186/1471-2229-13-47 URL |
[26] | Zhao YL, Chang X, Qi DY, et al. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean[J]. Front Plant Sci, 2017, 8:299. |
[27] |
Sun F, Liu PQ, Xu J, et al. Mutation in RAP2. 6L, a transactivator of the ERF transcription factor family, enhances Arabidopsis resistance to Pseudomonas syringae[J]. Physiol Mol Plant Pathol, 2010, 74(5/6):295-302.
doi: 10.1016/j.pmpp.2010.04.004 URL |
[28] |
练云, 王金社, 李海朝, 等. 黄淮大豆主产区大豆胞囊线虫生理小种分布调查[J]. 作物学报, 2016, 42(10):1479-1486.
doi: 10.3724/SP.J.1006.2016.01479 |
Lian Y, Wang JS, Li HC, et al. Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai rivers valley[J]. Acta Agron Sin, 2016, 42(10):1479-1486.
doi: 10.3724/SP.J.1006.2016.01479 URL |
|
[29] | 王从丽, 李春杰. 大豆孢囊线虫抗性遗传标记研究进展[J]. 土壤与作物, 2018, 7(2):229-235. |
Wang CL, Li CJ. Research advance of genetic resistance mapping in soybean cyst Nematodes[J]. Soils Crops, 2018, 7(2):229-235. |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[3] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[4] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[5] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[6] | CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage [J]. Biotechnology Bulletin, 2023, 39(2): 70-79. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans [J]. Biotechnology Bulletin, 2023, 39(10): 148-162. |
[9] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[10] | SHI Guang-cheng, YANG Wan-ming, DU Wei-jun, WANG Min. Screening of Salt-tolerant Soybean Germplasm and Physiological Characteristics Analysis of Its Salt Tolerance [J]. Biotechnology Bulletin, 2022, 38(4): 174-183. |
[11] | CAO Ying-hui, HU Mei-juan, TONG Yan, ZHANG Yan-ping, ZHAO Kai, PENG Dong-hui, ZHOU Yu-zhen. Identification of the ABC Gene Family and Expression Pattern Analysis During Flower Development in Cymbidium ensifolium [J]. Biotechnology Bulletin, 2022, 38(11): 162-174. |
[12] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[13] | LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals [J]. Biotechnology Bulletin, 2021, 37(7): 35-44. |
[14] | WANG Hui, ZHANG Shun-bin, JIN He, WANG Han, ZHANG Geng-hua, XIA Shi-ning, CHEN Jing-sheng, DUAN Yu-xi. Potential Function of 4-coumaric Acid-CoA Ligase in Response to Soybean Cyst Nematode Stress [J]. Biotechnology Bulletin, 2021, 37(7): 71-80. |
[15] | LIANG Ye, HE Chu-ting, YANG Yue, ZHANG Yu-fen, JIANG Fan. Effects of Inoculation of Rhizobacteria Containing ACC Deaminase on Soybean Growth Under Alkaline Stress [J]. Biotechnology Bulletin, 2020, 36(9): 100-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||