Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 32-40.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1267
Previous Articles Next Articles
ZHANG Chan(), WU You-gen(), YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping
Received:
2021-10-09
Online:
2022-08-26
Published:
2022-09-14
Contact:
WU You-gen
E-mail:afterlyly@163.com;wygeng2003@163.com
ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals[J]. Biotechnology Bulletin, 2022, 38(8): 32-40.
科Family | 物种Species | 萜类成分Terpenoids | 诱导信号Inductive signal | 参考文献Reference |
---|---|---|---|---|
唇形科 | 丹参 Salvia miltiorrhiza | 丹参酮类 | JA、Light、JA+Light | [ |
甘西鼠尾草Salvia przewalskii | 丹参酮类 | JA | [ | |
绒毛栗色鼠尾草Salvia castanea | 丹参酮类 | JA | [ | |
亚洲薄荷Mentha arvensis | 多种萜类 | Light | [ | |
菊科 | 黄花蒿Artemisia annua | 青蒿素 | JA、Light、JA+Light | [ |
兰科 | 铁皮石斛Dendrobium officinale | 芳樟醇 | JA | [ |
姜科 | 阳春砂Amomum villosum | 多种萜类 | JA | [ |
伞形科 | 雪积草Centella asiatica | 总三萜 | JA | [ |
大戟科 | 京大戟Euphorbia pekinensis | 总三萜 | JA | [ |
玄参科 | 胡黄连Picrorhiza kurrooa | 胡黄连苷 | Light | [ |
五加科 | 人参Panax ginseng | 人参皂苷 | JA、Light | [ |
葫芦科 | 绞股蓝Gynostemma pentaphyllum | 人参皂苷 | JA、Light | [ |
Table 1 Terpenoids in medicinal plants regulated by light and JA signals
科Family | 物种Species | 萜类成分Terpenoids | 诱导信号Inductive signal | 参考文献Reference |
---|---|---|---|---|
唇形科 | 丹参 Salvia miltiorrhiza | 丹参酮类 | JA、Light、JA+Light | [ |
甘西鼠尾草Salvia przewalskii | 丹参酮类 | JA | [ | |
绒毛栗色鼠尾草Salvia castanea | 丹参酮类 | JA | [ | |
亚洲薄荷Mentha arvensis | 多种萜类 | Light | [ | |
菊科 | 黄花蒿Artemisia annua | 青蒿素 | JA、Light、JA+Light | [ |
兰科 | 铁皮石斛Dendrobium officinale | 芳樟醇 | JA | [ |
姜科 | 阳春砂Amomum villosum | 多种萜类 | JA | [ |
伞形科 | 雪积草Centella asiatica | 总三萜 | JA | [ |
大戟科 | 京大戟Euphorbia pekinensis | 总三萜 | JA | [ |
玄参科 | 胡黄连Picrorhiza kurrooa | 胡黄连苷 | Light | [ |
五加科 | 人参Panax ginseng | 人参皂苷 | JA、Light | [ |
葫芦科 | 绞股蓝Gynostemma pentaphyllum | 人参皂苷 | JA、Light | [ |
[1] |
Lange BM, Rujan T, Martin W, et al. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. Proc Natl Acad Sci USA, 2000, 97(24):13172-13177.
doi: 10.1073/pnas.240454797 URL |
[2] |
Nagegowda DA. Plant volatile terpenoid metabolism:biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Lett, 2010, 584(14):2965-2973.
doi: 10.1016/j.febslet.2010.05.045 pmid: 20553718 |
[3] | 李军玲, 罗晓东, 赵沛基, 等. 植物萜类生物合成中的后修饰酶[J]. 云南植物研究, 2009, 31(5):461-468. |
Li JL, Luo XD, Zhao PJ, et al. Post-modification enzymes involved in the biosynthesis of plant terpenoids[J]. Acta Bot Yunnanica, 2009, 31(5):461-468. | |
[4] |
Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants[J]. Phytochemistry, 2009, 70(15/16):1621-1637.
doi: 10.1016/j.phytochem.2009.07.030 URL |
[5] |
Czechowski T, Larson TR, Catania TM, et al. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism[J]. Proc Natl Acad Sci USA, 2016, 113(52):15150-15155.
doi: 10.1073/pnas.1611567113 URL |
[6] |
Deng CP, Hao XL, Shi M, et al. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots[J]. Plant Sci, 2019, 284:1-8.
doi: 10.1016/j.plantsci.2019.03.007 URL |
[7] |
Li JR, Chen XZ, Zhou XX, et al. Identification of trihelix transcription factors in Pogostemon cablin reveals PatGT-1 negatively regulates patchoulol biosynthesis[J]. Ind Crops Prod, 2021, 161:113182.
doi: 10.1016/j.indcrop.2020.113182 URL |
[8] |
Yu ZM, Zhao CH, Zhang GH, et al. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis[J]. Int J Mol Sci, 2020, 21(15):5419.
doi: 10.3390/ijms21155419 URL |
[9] |
Fu XQ, Peng BW, Hassani D, et al. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua[J]. New Phytol, 2021, 231(5):1858-1874.
doi: 10.1111/nph.17453 URL |
[10] |
Jang I, Do G, Suh S, et al. Physiological responses and ginsenoside production of Panax ginseng seedlings grown under various ratios of red to blue light-emitting diodes[J]. Hortic Environ Biotechnol, 2020, 61(4):663-672.
doi: 10.1007/s13580-020-00255-5 URL |
[11] |
Wang CH, et al. Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots[J]. J Photochem Photobiol B, 2016, 159:93-100.
doi: 10.1016/j.jphotobiol.2016.01.012 URL |
[12] |
Barsain BL, Purohit A, Kumar A, et al. PkGPPS. SSU interacts with two PkGGPPS to form heteromeric GPPS in Picrorhiza kurrooa:molecular insights into the picroside biosynthetic pathway[J]. Plant Physiol Biochem, 2020, 154:115-128.
doi: 10.1016/j.plaphy.2020.05.029 URL |
[13] |
He XY, Wang H, Yang JF, et al. RNA sequencing on Amomum villosum Lour. induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis[J]. Genome, 2018, 61(2):91-102.
doi: 10.1139/gen-2017-0142 URL |
[14] |
Zhang Y, Ji AJ, Xu ZC, et al. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza[J]. Plant Mol Biol, 2019, 100(1/2):83-93.
doi: 10.1007/s11103-019-00845-7 URL |
[15] |
Chen IGJ, Lee MS, Lin MK, et al. Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation[J]. J Photochem Photobiol B, 2018, 183:164-171.
doi: 10.1016/j.jphotobiol.2018.04.013 URL |
[16] |
Li J, et al. Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. treated with methyl jasmonate and salicylic acid[J]. Mol Biol Rep, 2020, 47(11):8565-8578.
doi: 10.1007/s11033-020-05899-1 URL |
[17] |
Li B, et al. Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation[J]. Protoplasma, 2016, 253(1):87-100.
doi: 10.1007/s00709-015-0790-9 URL |
[18] | 吴怡. LED补光对亚洲薄荷生理性状、精油含量及自然香气的影响[D]. 上海: 上海交通大学, 2016. |
Wu Y. Effects of different light-emitting diede treatments on physiological characters, essential oil content and fresh aroma components of Mentha arvebsis[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
[19] |
Fu XQ, He YL, Li L, et al. Overexpression of blue light receptor AaCRY1 improves artemisinin content in Artemisia annua L[J]. Biotechnol Appl Biochem, 2021, 68(2):338-344.
doi: 10.1002/bab.1931 URL |
[20] |
Ma YN, Xu DB, Yan X, et al. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua[J]. Plant Biotechnol J, 2021, 19(7):1412-1428.
doi: 10.1111/pbi.13561 pmid: 33539631 |
[21] |
Yu ZM, Zhang GH, et al. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development[J]. Plant Sci, 2021, 309:110952.
doi: 10.1016/j.plantsci.2021.110952 URL |
[22] |
Nguyen KV, Pongkitwitoon B, Pathomwichaiwat T, et al. Effects of methyl jasmonate on the growth and triterpenoid production of diploid and tetraploid Centella asiatica(L. )Urb. hairy root cultures[J]. Sci Rep, 2019, 9(1):18665.
doi: 10.1038/s41598-019-54460-z pmid: 31822691 |
[23] | 张文娟, 等. 茉莉酸甲酯诱导大戟三萜类代谢的研究[J]. 广西植物, 2015, 35(4):590-596. |
Zhang WJ, et al. Triterpene biosynthesis in Euphorbia pekinensis induced by methyl jasmonate[J]. Guihaia, 2015, 35(4):590-596. | |
[24] |
Kawoosa T, Singh H, Kumar A, et al. Light and temperature regulated terpene biosynthesis:hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa[J]. Funct Integr Genomics, 2010, 10(3):393-404.
doi: 10.1007/s10142-009-0152-9 URL |
[25] |
Um Y, Lee Y, Kim SC, et al. Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis[J]. Hortic Environ Biotechnol, 2017, 58(4):376-383.
doi: 10.1007/s13580-017-0041-4 URL |
[26] | 李茹芳, 刘世彪, 赵娜, 等. 绞股蓝鲨烯合成酶基因GpSS1的克隆、序列与表达分析及MeJA对其表达的影响[J]. 中草药, 2016, 47(15):2713-2720. |
Li RF, Liu SB, Zhao N, et al. Gene cloning, sequence, and expression analysis of GpSS1 and its regulation by MeJA in Gynostemma pentaphyllum[J]. Chin Tradit Herb Drugs, 2016, 47(15):2713-2720. | |
[27] | Wang T, et al. Effect of light quality on total gypenosides accumulation and related key enzyme gene expression in Gynostemma pentaphyllum[J]. Chin Herb Med, 2018, 10(1):34-39. |
[28] |
Yu ZX, Li JX, Yang CQ, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L[J]. Mol Plant, 2012, 5(2):353-365.
doi: 10.1093/mp/ssr087 URL |
[29] |
Lu X, Zhang L, Zhang FY, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea[J]. New Phytol, 2013, 198(4):1191-1202.
doi: 10.1111/nph.12207 URL |
[30] |
Tan HX, Xiao L, Gao SH, et al. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua[J]. Mol Plant, 2015, 8(9):1396-1411.
doi: 10.1016/j.molp.2015.04.002 URL |
[31] |
Shen Q, Lu X, Yan TX, et al. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua[J]. New Phytol, 2016, 210(4):1269-1281.
doi: 10.1111/nph.13874 URL |
[32] |
Ji YP, Xiao JW, Shen YL, et al. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua[J]. Plant Cell Physiol, 2014, 55(9):1592-1604.
doi: 10.1093/pcp/pcu090 URL |
[33] |
Zhang FY, et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua[J]. Mol Plant, 2015, 8(1):163-175.
doi: 10.1016/j.molp.2014.12.004 URL |
[34] |
Hao XL, Zhong YJ, et al. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua[J]. Plant Cell Physiol, 2019, 60(8):1747-1760.
doi: 10.1093/pcp/pcz084 URL |
[35] |
Yan TX, Chen MH, Shen Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua[J]. New Phytol, 2017, 213(3):1145-1155.
doi: 10.1111/nph.14205 URL |
[36] |
Chen MH, Yan TX, Shen Q, et al. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua[J]. New Phytol, 2017, 214(1):304-316.
doi: 10.1111/nph.14373 URL |
[37] |
Lv ZY, Wang S, Zhang FY, et al. Overexpression of a novel NAC domain-containing transcription factor gene(AaNAC1)enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua[J]. Plant Cell Physiol, 2016, 57(9):1961-1971.
doi: 10.1093/pcp/pcw118 URL |
[38] |
Ma YN, Xu DB, Li L, et al. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua[J]. Sci Adv, 2018, 4(11):eaas9357.
doi: 10.1126/sciadv.aas9357 URL |
[39] |
Wu Z, Li L, Liu H, et al. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis[J]. Plant Sci, 2021, 308:110920.
doi: 10.1016/j.plantsci.2021.110920 URL |
[40] |
Li L, Hao XL, Liu H, et al. Jasmonic acid-responsive AabHLH1 positively regulates artemisinin biosynthesis in Artemisia annua[J]. Biotechnol Appl Biochem, 2019, 66(3):369-375.
doi: 10.1002/bab.1733 URL |
[41] |
Lopes EM, Guimarães-Dias F, Gama TDSS, et al. Artemisia annua L. and photoresponse:from artemisinin accumulation, volatile profile and anatomical modifications to gene expression[J]. Plant Cell Rep, 2020, 39(1):101-117.
doi: 10.1007/s00299-019-02476-0 URL |
[42] |
Ma TY, Gao H, Zhang D, et al. Transcriptome analyses revealed the ultraviolet B irradiation and phytohormone gibberellins coordinately promoted the accumulation of artemisinin in Artemisia annua L[J]. Chin Med, 2020, 15:67.
doi: 10.1186/s13020-020-00344-8 URL |
[43] |
Zhang D, Sun W, Shi YH, et al. Red and blue light promote the accumulation of artemisinin in Artemisia annua L[J]. Molecules, 2018, 23(6):1329.
doi: 10.3390/molecules23061329 URL |
[44] |
Hao XL, et al. Transcriptome analysis of genes associated with the artemisinin biosynthesis by jasmonic acid treatment under the light in Artemisia annua[J]. Front Plant Sci, 2017, 8:971.
doi: 10.3389/fpls.2017.00971 URL |
[45] |
Zhou YY, Sun W, Chen JF, et al. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Sci Rep, 2016, 6:22852.
doi: 10.1038/srep22852 URL |
[46] | 王宇. 丹参EIL类转录因子EIN3基因的克隆与功能分析[D]. 上海: 上海师范大学, 2018. |
Wang Y. Cloning and functional analysis of EIL transcription factor gene EIN3 from Salvia miltiorrhiza[D]. Shanghai: Shanghai Normal University, 2018. | |
[47] | 张建红. SmAP2/ERF82调控丹参酮生物合成及丹参生长发育的功能研究[D]. 北京: 北京协和医学院, 2020. |
Zhang JH. Functional characterization of SmAP2/ERF82 in regulating the biosynthesis of tanshinones and the growth and development of Salvia miltiorrhiza[D]. Beijing: Peking Union Medical College Hospital, 2020. | |
[48] |
Huang Q, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Food Chem, 2019, 274:368-375.
doi: 10.1016/j.foodchem.2018.08.119 URL |
[49] |
Xing BC, Yang DF, Yu HZ, et al. Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots[J]. Plant Sci, 2018, 276:229-238.
doi: 10.1016/j.plantsci.2018.07.016 URL |
[50] | 张蕊. 丹参转录因子SmbHLH74调控丹参酮生物合成的分子机制[D]. 沈阳: 沈阳农业大学, 2019. |
Zhang R. Molecular mechanism of SmbHLH74 in regulation of tanshinone biosynthesis in Salvia miltiorrhiza bunge[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[51] | Zhang JH, et al. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza[J]. Chin Herb Med, 2020, 12(3):237-246. |
[52] |
Xing BC, et al. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots[J]. Plant Cell Rep, 2018, 37(12):1681-1692.
doi: 10.1007/s00299-018-2339-9 URL |
[53] |
Zhang JX, Zhou LB, Zheng XY, et al. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots[J]. Plant Cell Rep, 2017, 36(8):1297-1309.
doi: 10.1007/s00299-017-2154-8 URL |
[54] |
Ding K, Pei TL, Bai ZQ, et al. SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots[J]. Sci Rep, 2017, 7(1):5104.
doi: 10.1038/s41598-017-04909-w pmid: 28698552 |
[55] |
Hao XL, Pu ZQ, Cao G, et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots[J]. J Adv Res, 2020, 23:1-12.
doi: 10.1016/j.jare.2020.01.012 URL |
[56] |
Cao WZ, Wang Y, Shi M, et al. Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza[J]. Front Plant Sci, 2018, 9:554.
doi: 10.3389/fpls.2018.00554 URL |
[57] | 吴可薇. 丹参转录因子SmWRKY40抑制丹参酮生物合成的分子机制[D]. 沈阳: 沈阳农业大学, 2020. |
Wu KW. Molecular mechnism of SmWRKY40 inhibits the biosynthesis of tanshinone in Salvia miltiorrhiza[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[58] | 殷学翠. 丹参转录因子SmWRKY44促进丹参酮生物合成的分子机制[D]. 沈阳: 沈阳农业大学, 2020. |
Yin XC. Molecular mechanism of SmWRKY44 promotes tanshinone biosynthesis in Salvia miltiorrhiza bunge[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[59] |
Kai GY, Liao P, Xu H, et al. Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures[J]. Acta Physiol Plant, 2012, 34(4):1421-1433.
doi: 10.1007/s11738-012-0940-z URL |
[60] | Xing BC, Yang DF, Liu L, et al. Phenolic acid production is more effectively enhanced than tanshinone production by methyl jasmonate in Salvia miltiorrhiza hairy roots[J]. Plant Cell Tissue Organ Cult PCTOC, 2018, 134(1):119-129. |
[61] | 裴天林. SmJAZ基因在调控丹参酮类和酚酸类物质合成中的功能研究[D]. 杨凌: 西北农林科技大学, 2019. |
Pei TL. The function of SmJAZ in regulating the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza[D]. Yangling: Northwest A & F University, 2019. | |
[62] |
Shi M, Zhou W, Zhang JL, et al. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins[J]. Sci Rep, 2016, 6:20919.
doi: 10.1038/srep20919 URL |
[63] | 冯思念, 等. 不同强度的红蓝光质对丹参根系形态和有效成分积累的影响[J]. 中草药, 2019, 50(21):5313-5318. |
Feng SN, et al. Effects of red light and blue light on root morphology and accumulation of bioactive compounds in Salvia miltiorrhiza[J]. Chin Tradit Herb Drugs, 2019, 50(21):5313-5318. | |
[64] |
Wang XB, Chen XZ, Zhong LT, et al. PatJAZ6 acts as a repressor regulating JA-induced biosynthesis of patchouli alcohol in Pogostemon cablin[J]. Int J Mol Sci, 2019, 20(23):6038.
doi: 10.3390/ijms20236038 URL |
[65] |
Chen XZ, Li JR, Liu YT, et al. PatSWC4, a methyl jasmonate-responsive MYB(v-myb avian myeloblastosis viral oncogene homolog)-related transcription factor, positively regulates patchoulol biosynthesis in Pogostemon cablin[J]. Ind Crops Prod, 2020, 154:112672.
doi: 10.1016/j.indcrop.2020.112672 URL |
[1] | ZHENG Min-min, LIU Jie, ZHAO Qing. Research Progress and Prospects of Biological Studies on the Medicinal Plant Scutellaria baicalensis [J]. Biotechnology Bulletin, 2023, 39(2): 10-23. |
[2] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[3] | ZHANG Hao, LIU Miao-miao, LIU Xiao-na, LI Zong-yu, ZHAO Li-li, YANG Qing-xiang. Impact of Endophytic Microorganisms on the Pharmaco-active Compounds Production in Medicinal Plants:A Review [J]. Biotechnology Bulletin, 2022, 38(8): 41-51. |
[4] | QIAN Jing-jie, LIN Su-meng, ZHANG Dong-ping, GAO Yong. Phytochrome Interacting Factors Involving in Auxin-regulated Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(10): 29-33. |
[5] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[6] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[7] | LI Zhi-wen, LIU Pei-yan, CHEN Jian-song, LIAO Jin-ling, LIN Bo-rong, ZHUO Kan. Identification of Rice Genes Responding to Both the Nematode Effector MgMO237 and Its Interacting Protein OsCRRSP55 [J]. Biotechnology Bulletin, 2021, 37(7): 88-97. |
[8] | LI Jing, FENG Na, WANG Sheng-yang, LIN Zhan-xi. Research Progress in Chemical Constituents of Taiwanofungus camphoratum and Its Pharmacological Activities [J]. Biotechnology Bulletin, 2021, 37(11): 14-31. |
[9] | XIE Wei, HAO Zhi-peng, GUO Lan-ping, ZHANG Xin, ZHANG Shu-bin, WANG You-shan, CHEN Bao-dong. Research Advances in Terpenoids Synthesis and Accumulation in Plants as Influenced by Arbuscular Mycorrhizal Symbiosis [J]. Biotechnology Bulletin, 2020, 36(9): 49-63. |
[10] | WANG Dan, LI Sheng-yan, LIU Jin-ping, LANG Zhi-hong. Study on the Function of Terpene Synthase Gene tps2 and Its Promoter Functional Segment in Zea mays [J]. Biotechnology Bulletin, 2020, 36(12): 1-11. |
[11] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[12] | YAN Wu-ping, WU You-gen, YU Jing ,YANG Dong-mei, ZHANG Jun-feng. Research Progress and Prospect of microRNA in Medicinal Plants [J]. Biotechnology Bulletin, 2019, 35(8): 178-185. |
[13] | ZHANG Hao-yu, FAN Jun-miao, WANG Ting, HAN Yuan-huai, DU Fang. Advances on Key Gene DXS Involved in the Terpenoid Biosynthesis in Plants [J]. Biotechnology Bulletin, 2018, 34(3): 1-8. |
[14] | GUO Ya-fei, WANG Jun-ya, GUO Fei, NI De-jiang. Cloning and Expression Analysis of CsDXS1 Gene Encoding 1-Deoxy-D-Xylulose-5-Phosphate Synthase in Camellia sinensis [J]. Biotechnology Bulletin, 2018, 34(1): 144-152. |
[15] | CUI Hong-li, CHEN Jun, HOU Yi-long, WU Hai-ge, QIN Song. Research Progress on Blue-photoreceptors and Its Functions in Eukaryotic Microalgae [J]. Biotechnology Bulletin, 2017, 33(4): 51-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||