Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 243-252.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0419
Previous Articles Next Articles
ZHU Jin-cheng(), YANG Yang, LOU Hui, ZHANG Wei()
Received:
2022-04-07
Online:
2023-01-26
Published:
2023-02-02
Contact:
ZHANG Wei
E-mail:1156661742@qq.com;zhw_agr@shzu.edu.cn
ZHU Jin-cheng, YANG Yang, LOU Hui, ZHANG Wei. Regulation of Fusarium wilt Resistance in Cotton by Exogenous Melatonin[J]. Biotechnology Bulletin, 2023, 39(1): 243-252.
引物名称Primer name | 引物序列Primer sequence(5'-3') | |
---|---|---|
正向Forward(F) | 反向Reverse(R) | |
GbPAL-F/R | CCAATGGTGAACTCCACCCGTC | TCGTCGGCGTAGGCATAGAGAT |
Gb4CL-F/R | CGACGTCGTAGCGCTTCCTTAT | CTCGTGACCAAACCTTTGTGCG |
GbCAD-F/R | CCCGAGAAACTAGCACCAGAGC | GCCGCATTAGAGCTCACAAGGA |
GbCHI-F/R | CAATGACTGTGGAGCCGACA | CCCAGAGATGATGATTCAGTGG |
GbDFR-F/R | GTTCCCACCAAGTTCAAAGATG | GAAGCAGTCCCTTTTCTCGG |
GbTT7-F/R | GCTTGCGAGATCAATGGCTACT | CAGCACCAAATGGAATCAACTC |
GhUBQ7-F/R | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
Table 1 Primer sequences for quantitative PCR
引物名称Primer name | 引物序列Primer sequence(5'-3') | |
---|---|---|
正向Forward(F) | 反向Reverse(R) | |
GbPAL-F/R | CCAATGGTGAACTCCACCCGTC | TCGTCGGCGTAGGCATAGAGAT |
Gb4CL-F/R | CGACGTCGTAGCGCTTCCTTAT | CTCGTGACCAAACCTTTGTGCG |
GbCAD-F/R | CCCGAGAAACTAGCACCAGAGC | GCCGCATTAGAGCTCACAAGGA |
GbCHI-F/R | CAATGACTGTGGAGCCGACA | CCCAGAGATGATGATTCAGTGG |
GbDFR-F/R | GTTCCCACCAAGTTCAAAGATG | GAAGCAGTCCCTTTTCTCGG |
GbTT7-F/R | GCTTGCGAGATCAATGGCTACT | CAGCACCAAATGGAATCAACTC |
GhUBQ7-F/R | GAAGGCATTCCACCTGACCAAC | CTTGACCTTCTTCTTCTTGTGCTTG |
Fig. 1 Effects of exogenous melatonin pretreatment at different concentration on the cotton resistance to Fusarium oxysporum f.sp. vasinfectum(Fov) A: Disease phenotypes of cotton with different treatments at 22 d. B: Disease phenotypes in stems of cotton treated with different treatments at 22 d. C: Cotton disease index at different time points of plants treated with different treatments. Different letters indicate significant difference(P <0.05), the same below
Fig. 2 Effects of exogenous melatonin at different concentration on the growth of Fov A: Fov colonies 7 d after inoculation on PDA medium. B: Fov colony diameter 7 d after inoculation on PDA medium
Fig. 3 Effects of melatonin pretreatment on cotton antioxidant system after Fov inoculated * indicates significant difference(P < 0.05), ** indicates extremely significant difference(P < 0.01), the same below
Fig. 5 Effects of melatonin pretreatment on the cotton expressions of genes related to phenylpropane metabolic pathway related genes after Fov inoculated
[1] | 余力, 何玉梅, 海丽齐汗·哈力克, 等. 海岛棉枯萎病对产量性状的贡献分析[J]. 新疆农业科学, 2015, 52(7): 1346-1351. |
Yu L, He YM, Hailiguli H, et al. Analysis on genetic contribution of Fusarium wilt to yield traits in island cotton[J]. Xinjiang Agric Sci, 2015, 52(7): 1346-1351. | |
[2] | 黄启秀, 曲延英, 倪志勇, 等. 海岛棉类黄酮代谢通路相关基因的克隆及序列分析[J]. 基因组学与应用生物学, 2018, 37(10): 4414-4422. |
Huang QX, Qu YY, Ni ZY, et al. Cloning and sequence analysis of related genes involved in flavonoids metabolism pathway in Gossypium barbadense L.[J]. Genom Appl Biol, 2018, 37(10): 4414-4422. | |
[3] |
Wang PZ, Su L, Qin L, et al. Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton[J]. Theor Appl Genet, 2009, 119(4): 733-739.
doi: 10.1007/s00122-009-1084-4 URL |
[4] |
Davis RM, Colyer PD, Rothrock CS, et al. Fusarium wilt of cotton: population diversity and implications for management[J]. Plant Dis, 2006, 90(6): 692-703.
doi: 10.1094/PD-90-0692 pmid: 30781226 |
[5] | 刘叶, 阿依保他·托合达白, 郭楠楠, 等. 农杆菌介导的棉花枯萎病菌转化体系的优化[J]. 微生物学通报, 2021, 48(9): 2991-3001. |
Liu Y, Ayibaota T, Guo NN, et al. Optimization of Agrobacterium tumefaciens-mediated transformation system for Fusarium oxysporum[J]. Microbiol China, 2021, 48(9): 2991-3001. | |
[6] |
Xu J, Xu XY, Tian LL, et al. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton[J]. Sci Rep, 2016, 6: 29022.
doi: 10.1038/srep29022 URL |
[7] |
Zhang ZY, Zhao J, Ding LY, et al. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton[J]. Sci Rep, 2016, 6: 20773.
doi: 10.1038/srep20773 URL |
[8] | Gong B, Shi QH. Review of melatonin in horticultural crops[J]. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337. |
[9] | Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants[J]. J Exp Bot, 2022: 2022 Mar 5;erac002. |
[10] |
Back K. Melatonin metabolism, signaling and possible roles in plants[J]. Plant J, 2021, 105(2): 376-391.
doi: 10.1111/tpj.14915 URL |
[11] |
Liu JP, Wu H, Wang B, et al. Exogenous melatonin enhances cold resistance by improving antioxidant defense and cold-responsive genes’ expression in banana[J]. Horticulturae, 2022, 8(3): 260.
doi: 10.3390/horticulturae8030260 URL |
[12] | Altaf MA, Shahid R, Ren MX, et al. Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system[J]. Antioxidants(Basel), 2022, 11(2): 309. |
[13] | Chen L, Liu LT, Lu B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton(Gossypium hirsutum L.)[J]. PLoS One, 2020, 15(1): e0228241. |
[14] |
Jahan MS, Shu S, Wang Y, et al. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways[J]. Front Plant Sci, 2021, 12: 650955.
doi: 10.3389/fpls.2021.650955 URL |
[15] |
Liu CX, Chen LL, Zhao RR, et al. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway[J]. J Agric Food Chem, 2019, 67(22): 6116-6124.
doi: 10.1021/acs.jafc.9b00058 URL |
[16] |
Sun YK, Liu ZY, Lan GP, et al. Effect ofexogenous melatonin on resistance of cucumber to downy mildew[J]. Sci Hortic, 2019, 255: 231-241
doi: 10.1016/j.scienta.2019.04.057 URL |
[17] |
Zhang ZK, Wang T, Liu GS, et al. Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin[J]. Food Chem, 2021, 347: 129009.
doi: 10.1016/j.foodchem.2021.129009 URL |
[18] |
Lu RF, Liu ZY, Shao YD, et al. Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway[J]. Virol J, 2019, 16(1): 141.
doi: 10.1186/s12985-019-1228-3 pmid: 31752902 |
[19] |
Kong MM, Liang J, Ali Q, et al. 5-methoxyindole, a chemical homolog of melatonin, adversely affects the phytopathogenic fungus Fusarium graminearum[J]. Int J Mol Sci, 2021, 22(20): 10991.
doi: 10.3390/ijms222010991 URL |
[20] | 陈磊. 海岛棉抗枯萎病性的遗传分析及遗传连锁图谱加密[D]. 乌鲁木齐: 新疆农业大学, 2012. |
Chen L. Genetic analysis of sea island cotton resistance to cotton Fusarium wilt s and linkage map encryption[D]. Urumqi: Xinjiang Agricultural University, 2012. | |
[21] |
Yin LH, Wang P, Li MJ, et al. Exogenous melatonin improves Malus resistance to Marssonina apple blotch[J]. J Pineal Res, 2013, 54(4): 426-434.
doi: 10.1111/jpi.12038 URL |
[22] | Tiwari RK, Lal MK, Naga KC, et al. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops[J]. Sci Hortic, 2020, 272: 109592. |
[23] | 夏铭. 褪黑素对萝卜黑斑病调控的影响[D]. 贵阳: 贵州大学, 2021. |
Xia M. Effect of melatonin on the regula tion of radish(Raphanus sativus L.)black spot[D]. Guiyang: Guizhou University, 2021. | |
[24] |
Li C, He QL, Zhang F, et al. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis[J]. Plant J, 2019, 100(4): 784-800.
doi: 10.1111/tpj.14477 URL |
[25] |
Li TT, Wu QX, Zhu H, et al. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel[J]. BMC Plant Biol, 2019, 19(1): 289.
doi: 10.1186/s12870-019-1855-2 pmid: 31262259 |
[26] |
Li SG, Xu YH, Bi Y, et al. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest[J]. Postharvest Biol Technol, 2019, 157: 110962.
doi: 10.1016/j.postharvbio.2019.110962 URL |
[27] |
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225 |
[28] |
Konappa N, Krishnamurthy S, Siddaiah CN, et al. Evaluation of biological efficacy of Trichoderma asperellum against tomato bacterial wilt caused by Ralstonia solanacearum[J]. Egypt J Biol Pest Control, 2018, 28: 63.
doi: 10.1186/s41938-018-0069-5 URL |
[29] |
Ali MB, Khatun S, Hahn EJ, et al. Enhancement of phenylpropanoid enzymes and lignin in Phalaenopsis orchid and their influence on plant acclimatisation at different levels of photosynthetic photon flux[J]. Plant Growth Regul, 2006, 49(2/3): 137-146.
doi: 10.1007/s10725-006-9003-z URL |
[30] |
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants[J]. Annu Rev Phytopathol, 2006, 44: 135-162.
pmid: 16602946 |
[31] |
Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals[J]. New Phytol, 2015, 206(3): 948-964.
doi: 10.1111/nph.13325 pmid: 25659829 |
[32] |
Hou JN, Zhao FA, Yang XJ, et al. Lignin synthesis related genes with potential significance in the response of upland cotton to Fusarium wilt identified by transcriptome profiling[J]. Trop Plant Biol, 2021, 14(2): 106-119.
doi: 10.1007/s12042-020-09278-9 URL |
[33] |
Gao SW, Ma WY, Lyu XN, et al. Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries[J]. BMC Plant Biol, 2020, 20(1): 231.
doi: 10.1186/s12870-020-02445-w pmid: 32448301 |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[3] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[4] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[5] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[6] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[7] | DENG Jia-hui, LEI Jian-feng, ZHAO Yi, LIU Min, HU Zi-yao, YOU Yang-zi, SHAO Wu-kui, LIU Jian-fei, LIU Xiao-dong. Construction of a New Mini Genome Editing System Based on Csy4 and MCP [J]. Biotechnology Bulletin, 2023, 39(10): 68-79. |
[8] | LI Xiu-qing, HU Zi-yao, LEI Jian-feng, DAI Pei-hong, LIU Chao, DENG Jia-hui, LIU Min, SUN Ling, LIU Xiao-dong, LI Yue. Cloning and Functional Analysis of Gene GhTIFY9 Related to Cotton Verticillium Wilt Resistance [J]. Biotechnology Bulletin, 2022, 38(8): 127-134. |
[9] | ZHAO Zeng-qiang, GUO Wen-ting, ZHANG Xi, LI Xiao-ling, ZHANG Wei. Cloning and Functional Analysis of GhERF5-4D Gene Related to Fusarium oxysporum Resistance in Cotton [J]. Biotechnology Bulletin, 2022, 38(4): 193-201. |
[10] | ZHAO Yi, LEI Jian-feng, LIU Min, HU Zi-yao, DAI Pei-hong, LIU Chao, LI Yue, LIU Xiao-dong. Research on the Carrying Capacity of CLCrV-mediated VIGE System [J]. Biotechnology Bulletin, 2022, 38(11): 210-219. |
[11] | HU Zi-yao, DAI Pei-hong, LIU Chao, Madina Mulati, WANG Qian, Wugalihan Abuduwili, ZHAO Yi, SUN Ling, XU Shi-jia, LI Yue. Molecular Cloning,Expression and VIGS Construction of a Small GTP-binding Protein Gene GhROP3 in Gossypium hirsutum [J]. Biotechnology Bulletin, 2021, 37(9): 106-113. |
[12] | LIU Xiao-yi, YANG Jian, LIU Jing, WANG Bing, DAI Liang-ying, LI Wei. Research Progress in Heat Shock Transcription Factors in Oryza sativa [J]. Biotechnology Bulletin, 2021, 37(9): 226-233. |
[13] | LIU Yuan-yuan, YANG Dong-jie, ZUO Dong-yun, CHENG Hai-liang, ZHANG You-ping, LV Li-min, WANG Qiao-lian, SONG Guo-li. Cloning and Functional Verification of GhD6PKL2 from Gossypium hirsutum [J]. Biotechnology Bulletin, 2021, 37(8): 111-120. |
[14] | MA Xu-hui, CHEN Ru-mei, LIU Xiao-qing, ZHAO Jun, ZHANG Xia. Effects of Melatonin on Root Growth and Drought Tolerance of Maize Seedlings [J]. Biotechnology Bulletin, 2021, 37(2): 1-14. |
[15] | GUO Mei-yan, LIU Bao-you, LI Yang, ZHANG Xiao-ying, CEHN Yu-guo, DING Xin-hua. Application Effect of a Novel Plant Immune Inducer ZNC in Tobacco [J]. Biotechnology Bulletin, 2021, 37(1): 182-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||