Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 219-228.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0818
Previous Articles Next Articles
LUO Yan-ju(), XIE Lin-yan, ZOU Qing-lin, LI Si-jie, LIU Han, LIU Lu-feng, HE Li-lian, LI Fu-sheng()
Received:
2023-08-20
Online:
2023-12-26
Published:
2024-01-11
Contact:
LI Fu-sheng
E-mail:1833912990@qq.com;Lfs810@sina.com
LUO Yan-ju, XIE Lin-yan, ZOU Qing-lin, LI Si-jie, LIU Han, LIU Lu-feng, HE Li-lian, LI Fu-sheng. Physiological Response and Drought Resistance Evaluation of Endophytic Bacteria to Sugarcane Under Drought Stress[J]. Biotechnology Bulletin, 2023, 39(12): 219-228.
Fig. 1 Effects of drought and rehydration on the relative water contents and in vitro water loss of sugarcane leaves at seedling stage Different lowercase letters in the figure indicate significant differences between treatments(P<0.05). The same below
处理 Treatment | 胁迫后叶绿素总含量Total chlorophyll content after stress | 复水后叶绿素总含量 Total chlorophyll content after rehydration | 胁迫后叶绿素a/b Chlorophyll a/b after stress | 复水后叶绿素a/b Chlorophyll a/b after rehydration |
---|---|---|---|---|
CK | 2.164±0.154b | 1.902±0.045bc | 2.575±0.325b | 3.938±0.183abc |
WD | 1.517±0.006d | 1.575±0.117e | 2.482±0.055b | 3.032±1.377c |
K5 | 1.946±0.218c | 2.156±0.105a | 2.5572±0.290b | 4.691±0.656ab |
ZD | 2.385±0.090a | 1.847±0.049cd | 2.850±0.285ab | 3.699±0.166bc |
DD | 2.156±0.148b | 1.994±0.096b | 3.057±0.300a | 5.259±2.098a |
YD | 1.582±0.115d | 2.264±0.159a | 3.079±0.087a | 4.837±1.789ab |
TD | 1.625±0.066d | 1.723±0.136d | 2.566±0.771b | 3.174±0.452c |
FD | 1.586±0.098d | 1.718±0.122d | 2.724±0.404ab | 3.970±0.281abc |
Table 1 Effects of drought and rehydration on chlorophyll at seedling stage of sugarcane (mg·g-1)
处理 Treatment | 胁迫后叶绿素总含量Total chlorophyll content after stress | 复水后叶绿素总含量 Total chlorophyll content after rehydration | 胁迫后叶绿素a/b Chlorophyll a/b after stress | 复水后叶绿素a/b Chlorophyll a/b after rehydration |
---|---|---|---|---|
CK | 2.164±0.154b | 1.902±0.045bc | 2.575±0.325b | 3.938±0.183abc |
WD | 1.517±0.006d | 1.575±0.117e | 2.482±0.055b | 3.032±1.377c |
K5 | 1.946±0.218c | 2.156±0.105a | 2.5572±0.290b | 4.691±0.656ab |
ZD | 2.385±0.090a | 1.847±0.049cd | 2.850±0.285ab | 3.699±0.166bc |
DD | 2.156±0.148b | 1.994±0.096b | 3.057±0.300a | 5.259±2.098a |
YD | 1.582±0.115d | 2.264±0.159a | 3.079±0.087a | 4.837±1.789ab |
TD | 1.625±0.066d | 1.723±0.136d | 2.566±0.771b | 3.174±0.452c |
FD | 1.586±0.098d | 1.718±0.122d | 2.724±0.404ab | 3.970±0.281abc |
处理 Treatment | RWC | RWL | MDA | Pro | SS | SP | POD | SOD | ChI |
---|---|---|---|---|---|---|---|---|---|
相对含水量RWC | 1.000 | ||||||||
离体失水率RWL | 0.706 | 1.000 | |||||||
丙二醛MDA | -0.837* | -0.566 | 1.000 | ||||||
脯氨酸Pro | 0.083 | -0.306 | -0.014 | 1.000 | |||||
可溶性糖 SS | 0.403 | 0.225 | -0.317 | 0.003 | 1.000 | ||||
可溶性蛋白SP | 0.835* | 0.796* | -0.721 | 0.091 | -0.082 | 1.000 | |||
过氧化物酶POD | 0.079 | -0.438 | -0.255 | 0.295 | -0.387 | 0.090 | 1.000 | ||
超氧化物歧化酶SOD | 0.655 | 0.224 | -0.476 | 0.528 | -0.238 | 0.739 | 0.475 | 1.000 | |
叶绿素ChI | 0.291 | -0.317 | -0.055 | 0.848* | 0.157 | 0.102 | 0.394 | 0.653 | 1.000 |
Table 2 Correlation analysis of each index
处理 Treatment | RWC | RWL | MDA | Pro | SS | SP | POD | SOD | ChI |
---|---|---|---|---|---|---|---|---|---|
相对含水量RWC | 1.000 | ||||||||
离体失水率RWL | 0.706 | 1.000 | |||||||
丙二醛MDA | -0.837* | -0.566 | 1.000 | ||||||
脯氨酸Pro | 0.083 | -0.306 | -0.014 | 1.000 | |||||
可溶性糖 SS | 0.403 | 0.225 | -0.317 | 0.003 | 1.000 | ||||
可溶性蛋白SP | 0.835* | 0.796* | -0.721 | 0.091 | -0.082 | 1.000 | |||
过氧化物酶POD | 0.079 | -0.438 | -0.255 | 0.295 | -0.387 | 0.090 | 1.000 | ||
超氧化物歧化酶SOD | 0.655 | 0.224 | -0.476 | 0.528 | -0.238 | 0.739 | 0.475 | 1.000 | |
叶绿素ChI | 0.291 | -0.317 | -0.055 | 0.848* | 0.157 | 0.102 | 0.394 | 0.653 | 1.000 |
生理指标 Physiological index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
相对含水量RWC | 0.248 | -0.079 | 0.109 |
离体失水率RWL | 0.165 | -0.270 | -0.041 |
丙二醛MDA | -0.218 | 0.087 | 0.005 |
脯氨酸Pro | 0.076 | 0.293 | 0.245 |
可溶性糖SS | 0.045 | -0.124 | 0.635 |
可溶性蛋白SP | 0.239 | -0.075 | -0.202 |
过氧化物酶POD | 0.061 | 0.252 | -0.299 |
超氧化物歧化酶SOD | 0.215 | 0.175 | -0.145 |
总叶绿ChI | 0.104 | 0.297 | 0.302 |
特征值eigenvalue | 3.816 | 2.658 | 1.391 |
贡献率Contribution rate/% | 42.402 | 29.533 | 15.452 |
累积贡献率Cumulative contribution rate/% | 42.402 | 71.935 | 87.388 |
Table 3 Comprehensive index coefficient and contribution rate
生理指标 Physiological index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
相对含水量RWC | 0.248 | -0.079 | 0.109 |
离体失水率RWL | 0.165 | -0.270 | -0.041 |
丙二醛MDA | -0.218 | 0.087 | 0.005 |
脯氨酸Pro | 0.076 | 0.293 | 0.245 |
可溶性糖SS | 0.045 | -0.124 | 0.635 |
可溶性蛋白SP | 0.239 | -0.075 | -0.202 |
过氧化物酶POD | 0.061 | 0.252 | -0.299 |
超氧化物歧化酶SOD | 0.215 | 0.175 | -0.145 |
总叶绿ChI | 0.104 | 0.297 | 0.302 |
特征值eigenvalue | 3.816 | 2.658 | 1.391 |
贡献率Contribution rate/% | 42.402 | 29.533 | 15.452 |
累积贡献率Cumulative contribution rate/% | 42.402 | 71.935 | 87.388 |
处理 Treatment | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | U1 | U2 | U3 | D值 D value | 抗旱性排名 Drought resistance ranking |
---|---|---|---|---|---|---|---|---|
WD | -4.293 | 0.026 | -0.328 | 0.000 | 0.428 | 0.424 | 0.220 | 7 |
KD | 0.174 | -0.258 | 1.504 | 0.761 | 0.371 | 1.000 | 0.671 | 3 |
ZD | 1.120 | 2.862 | 0.217 | 0.922 | 1.000 | 0.595 | 0.890 | 1 |
DD | 0.549 | 0.715 | 0.576 | 0.825 | 0.567 | 0.708 | 0.717 | 2 |
YD | 1.580 | -1.625 | -1.320 | 1.000 | 0.095 | 0.112 | 0.537 | 6 |
TD | 0.383 | 0.377 | -1.674 | 0.796 | 0.499 | 0.000 | 0.555 | 4 |
FD | 0.487 | -2.096 | 1.025 | 0.814 | 0.000 | 0.849 | 0.545 | 5 |
权重Weight | 0.485 | 0.338 | 0.177 |
Table 4 Comprehensive index value, weight, membership function value(Ui), D value and comprehensive evaluation of each processing
处理 Treatment | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | U1 | U2 | U3 | D值 D value | 抗旱性排名 Drought resistance ranking |
---|---|---|---|---|---|---|---|---|
WD | -4.293 | 0.026 | -0.328 | 0.000 | 0.428 | 0.424 | 0.220 | 7 |
KD | 0.174 | -0.258 | 1.504 | 0.761 | 0.371 | 1.000 | 0.671 | 3 |
ZD | 1.120 | 2.862 | 0.217 | 0.922 | 1.000 | 0.595 | 0.890 | 1 |
DD | 0.549 | 0.715 | 0.576 | 0.825 | 0.567 | 0.708 | 0.717 | 2 |
YD | 1.580 | -1.625 | -1.320 | 1.000 | 0.095 | 0.112 | 0.537 | 6 |
TD | 0.383 | 0.377 | -1.674 | 0.796 | 0.499 | 0.000 | 0.555 | 4 |
FD | 0.487 | -2.096 | 1.025 | 0.814 | 0.000 | 0.849 | 0.545 | 5 |
权重Weight | 0.485 | 0.338 | 0.177 |
Treatment | D value(X0) | RWC(X1) | RWL(X2) | MDA(X3) | Pro(X4) | SS(X5) | SP(X6) | POD(X7) | SOD(X8) | ChI(X9) |
---|---|---|---|---|---|---|---|---|---|---|
WD | -1.940 | -2.340 | -1.374 | 2.185 | -0.665 | -0.826 | -1.991 | -0.714 | -1.766 | -0.992 |
KD | 0.420 | 0.262 | 0.330 | -0.080 | 0.630 | 1.377 | -0.155 | -0.337 | -0.614 | 0.376 |
ZD | 1.566 | -0.007 | -0.818 | 0.014 | 2.208 | -0.655 | 0.313 | 0.725 | 1.471 | 1.774 |
DD | 0.661 | 0.686 | -0.411 | 0.151 | -0.273 | 0.609 | -0.190 | 0.497 | 0.622 | 1.046 |
YD | -0.281 | 0.774 | 1.835 | -0.194 | -0.666 | -0.953 | 1.675 | -0.783 | 0.742 | -0.785 |
TD | -0.187 | 0.005 | -0.374 | -0.991 | -0.555 | -0.920 | 0.251 | 1.856 | 0.160 | -0.648 |
FD | -0.239 | 0.620 | 0.811 | -1.085 | -0.679 | 1.367 | 0.098 | -1.244 | -0.615 | -0.772 |
Table 5 Non-dimensional processing of data
Treatment | D value(X0) | RWC(X1) | RWL(X2) | MDA(X3) | Pro(X4) | SS(X5) | SP(X6) | POD(X7) | SOD(X8) | ChI(X9) |
---|---|---|---|---|---|---|---|---|---|---|
WD | -1.940 | -2.340 | -1.374 | 2.185 | -0.665 | -0.826 | -1.991 | -0.714 | -1.766 | -0.992 |
KD | 0.420 | 0.262 | 0.330 | -0.080 | 0.630 | 1.377 | -0.155 | -0.337 | -0.614 | 0.376 |
ZD | 1.566 | -0.007 | -0.818 | 0.014 | 2.208 | -0.655 | 0.313 | 0.725 | 1.471 | 1.774 |
DD | 0.661 | 0.686 | -0.411 | 0.151 | -0.273 | 0.609 | -0.190 | 0.497 | 0.622 | 1.046 |
YD | -0.281 | 0.774 | 1.835 | -0.194 | -0.666 | -0.953 | 1.675 | -0.783 | 0.742 | -0.785 |
TD | -0.187 | 0.005 | -0.374 | -0.991 | -0.555 | -0.920 | 0.251 | 1.856 | 0.160 | -0.648 |
FD | -0.239 | 0.620 | 0.811 | -1.085 | -0.679 | 1.367 | 0.098 | -1.244 | -0.615 | -0.772 |
指标Index | 关联系数Correlation coefficient ζj(k) | 关联度Correlation degree(r) | 关联序Order of association | ||||||
---|---|---|---|---|---|---|---|---|---|
WD | KD | ZD | DD | YD | TD | FD | |||
RWC | 0.546 | 0.912 | 0.666 | 0.953 | 0.951 | 0.806 | 0.870 | 0.810 | 3 |
RWL | 0.795 | 0.834 | 0.572 | 0.674 | 0.932 | 0.718 | 0.991 | 0.714 | 7 |
MDA | 0.514 | 0.967 | 0.767 | 0.917 | 0.888 | 0.745 | 0.814 | 0.709 | 8 |
Pro | 0.826 | 0.889 | 0.905 | 0.864 | 0.862 | 0.891 | 0.998 | 0.794 | 4 |
SS | 0.820 | 0.827 | 0.731 | 0.980 | 0.855 | 0.872 | 0.763 | 0.701 | 9 |
SP | 0.800 | 0.952 | 0.822 | 0.845 | 0.713 | 0.977 | 0.891 | 0.764 | 5 |
POD | 0.824 | 0.963 | 0.860 | 0.974 | 0.855 | 0.782 | 0.923 | 0.719 | 6 |
SOD | 0.729 | 0.791 | 0.832 | 0.939 | 0.852 | 0.980 | 0.860 | 0.853 | 1 |
ChI | 0.774 | 0.971 | 0.792 | 0.886 | 0.634 | 0.666 | 0.709 | 0.843 | 2 |
Table 6 Correlation coefficient, correlation degree and correlation order of the comprehensive evaluation values and each index of drought resistance under drought treatment
指标Index | 关联系数Correlation coefficient ζj(k) | 关联度Correlation degree(r) | 关联序Order of association | ||||||
---|---|---|---|---|---|---|---|---|---|
WD | KD | ZD | DD | YD | TD | FD | |||
RWC | 0.546 | 0.912 | 0.666 | 0.953 | 0.951 | 0.806 | 0.870 | 0.810 | 3 |
RWL | 0.795 | 0.834 | 0.572 | 0.674 | 0.932 | 0.718 | 0.991 | 0.714 | 7 |
MDA | 0.514 | 0.967 | 0.767 | 0.917 | 0.888 | 0.745 | 0.814 | 0.709 | 8 |
Pro | 0.826 | 0.889 | 0.905 | 0.864 | 0.862 | 0.891 | 0.998 | 0.794 | 4 |
SS | 0.820 | 0.827 | 0.731 | 0.980 | 0.855 | 0.872 | 0.763 | 0.701 | 9 |
SP | 0.800 | 0.952 | 0.822 | 0.845 | 0.713 | 0.977 | 0.891 | 0.764 | 5 |
POD | 0.824 | 0.963 | 0.860 | 0.974 | 0.855 | 0.782 | 0.923 | 0.719 | 6 |
SOD | 0.729 | 0.791 | 0.832 | 0.939 | 0.852 | 0.980 | 0.860 | 0.853 | 1 |
ChI | 0.774 | 0.971 | 0.792 | 0.886 | 0.634 | 0.666 | 0.709 | 0.843 | 2 |
[1] | 吴建明, 李燕娇, 邓宇驰, 等. 中国甘蔗栽培的研究进展[J]. 广西科学, 2022, 29(4): 613-626. |
Wu JM, Li YJ, Deng YC, et al. Research progress in sugarcane cultivation in China[J]. Guangxi Sci, 2022, 29(4): 613-626. | |
[2] |
de Abreu LGF, Grassi MCB, de Carvalho LM, et al. Energy cane vs sugarcane: Watching the race in plant development[J]. Ind Crops Prod, 2020, 156: 112868.
doi: 10.1016/j.indcrop.2020.112868 URL |
[3] | 蒋雨珂. 干旱锻炼对甘蔗根系形态建成及其根际微生物群落的影响[D]. 南宁: 广西大学, 2021. |
Jiang YK. effects of drought exercise on root morphogenesis and rhizosphere microbial community of sugarcane[D]. Nangning: Guangxi University, 2021. | |
[4] |
Misra V, Solomon S, Mall AK, et al. Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop[J]. Saudi J Biol Sci, 2020, 27(5): 1228-1236.
doi: 10.1016/j.sjbs.2020.02.007 URL |
[5] |
Ferreira THS, Tsunada MS, Bassi D, et al. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions[J]. Front plant sci, 2017, 8: 1077.
doi: 10.3389/fpls.2017.01077 pmid: 28690620 |
[6] |
李佩婷, 赵振丽, 黄潮华, 等. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
doi: 10.3724/SP.J.1006.2022.14121 |
Li PT, Zhao ZL, Huang CH, et al. Analysis of drought response regulatory network in sugarcane based on transcriptomes and WGCNA[J]. Acta Agrono Sin, 2022, 48(7): 1583-1600. | |
[7] |
Guga SR, Ma YN, Dao RA, et al. Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China[J]. Agric Water Manag, 2023, 275: 108035.
doi: 10.1016/j.agwat.2022.108035 URL |
[8] |
Wang JF, Hou WP, Christensen MJ, et al. Role of Epichloe endophytes in improving host grass resistance ability and soil properties[J]. J Agric Food Chem, 2020, 68(26): 6944-6955.
doi: 10.1021/acs.jafc.0c01396 URL |
[9] |
Zuo YL, Hu QN, Qin L, et al. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions[J]. Front Plant Sci, 2022, 13: 933738.
doi: 10.3389/fpls.2022.933738 URL |
[10] | 张文英, 蒿若超, 汪嫒嫒, 等. 内生真菌印度梨形孢诱导提高玉米苗期抗旱性研究初探[J]. 玉米科学, 2013, 21(5): 127-130. |
Zhang WY, Hao RCh, Wang AA, et al. Conferring drought tolerance in maize seeding by endophytic fungus Piriformospora indica[J]. J Maize Sci, 2013, 21(5): 127-130. | |
[11] |
Morales-Quintana L, Moya M, Santelices-Moya R, et al. Improvement in the physiological and biochemical performance of strawberries under drought stress through symbiosis with Antarctic fungal endophytes[J]. Front Microbiol, 2022, 13: 939955.
doi: 10.3389/fmicb.2022.939955 URL |
[12] |
Khan Z, Rho H, Firrincieli A, et al. Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia[J]. Curr Plant Biol, 2016, 6: 38-47.
doi: 10.1016/j.cpb.2016.08.001 URL |
[13] |
Scudeletti D, Crusciol CAC, Bossolani JW, et al. Trichoderma asperellum inoculation as a tool for attenuating drought stress in sugarcane[J]. Front Plant Sci, 2021, 12: 645542.
doi: 10.3389/fpls.2021.645542 URL |
[14] |
谷书杰, 钱禛锋, 娄永明, 等. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47.
doi: 10.11924/j.issn.1000-6850.casb2021-0416 |
Gu SJ, Qian ZF, Lou YM, et al. Physiological effects of endophytic bacteria inoculated on sugarcane under drought stress[J]. Chin Agric Sci Bull, 2022, 38(6): 42-47. | |
[15] | 杜成忠. 不同甘蔗品种抗旱性的生理和分子机制[D]. 南宁: 广西大学, 2015. |
Du CZ. Physiological and molecular mechanisms of drought resistance of different sugarcane varieties[D]. Nanning: Guangxi University, 2015. | |
[16] |
蔺豆豆, 赵桂琴, 琚泽亮, 等. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121.
doi: 10.11686/cyxb2021219 |
Lin DD, Zhao GQ, Ju ZL, et al. Comprehensive evaluation of drought resistance of 15 oat materials at seedling stage[J]. Acta Prataculturae Sin, 21, 30(11): 108-121. | |
[17] | 李懿洋. 甘肃省产业结构与经济增长的灰色关联分析[J]. 企业经济, 2011(5): 20-23. |
Li YY. Grey correlation analysis between industrial structure and economic growth in Gansu Province[J]. Enterp Econ, 2011(5): 20-23. | |
[18] | 方自豪. 中蔗品种(系)苗期抗旱性综合评价及抗旱指标筛选[D]. 福州: 福建农林大学, 2022. |
Fang ZH. Comprehensive evaluation of drought resistance of medium sugarcane varieties(lines)at seedling stage and screening of drought resistance indexes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022. | |
[19] | 李小玉, 田宏先, 王瑞霞. 灰色关联度分析和主成分分析在油菜抗旱育种中的应用[J]. 种子, 2021, 40(9): 92-97. |
Li XY, Tian HX, Wang RX. Aplication of grey correlation degree analysis and principal component analysis in drought resistance breeding of Brassica juncea L.[J]. Seed, 2019, 40(9): 92-97. | |
[20] | 何永涛, 胡宇, 段慧荣, 等. 披碱草属4个牧草品种苗期抗旱性综合评价[J]. 中国草地学报, 2023, 45(1): 77-87. |
He YT, Hu Y, Duan HR, et al. Comprehensive evaluation of drought resistance of four Eymus varieties at seedling stage[J]. Chin J Grassland, 2023, 45(1): 77-87. | |
[21] | 刘硕. 不同甘蔗品种伸长期对干旱胁迫生理及形态响应研究[D]. 昆明: 云南大学, 2022. |
Liu S. Physiological and morphological responses of different sugarcane varieties to drought stress during elongation period[D]. Kunming: Yunnan University, 2022. | |
[22] | 李海碧, 周会, 韦金菊, 等. 甘蔗常用亲本的田间抗旱指标筛选及抗旱性评价[J]. 南方农业学报, 2023, 54(1): 46-55. |
Li HB, Zhou H, Wei JJ, et al. Drought resistance index screening and drought resistance evaluation of commonly-used sugarcane parents in field[J]. J South Agric Sci, 2019, 54(1): 46-55. | |
[23] | 谭秦亮, 程琴, 潘成列, 等. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022(3): 161-167. |
Tan QL, Cheng Q, Pan CL, et al. Effects of drought stress on physiological indexes of a new sugarcane variety Gure 2[J]. Crops, 2022(3): 161-167. | |
[24] | 刘硕, 樊仙, 杨绍林, 等. 干旱胁迫对甘蔗光合日变化及相关特性的影响[J]. 南方农业学报, 2022, 53(2): 430-440. |
Liu S, Fan X, Yang SL, et al. Effects of drought stress on diurnal changes and related characteristics of sugarcane photosynthesis[J]. J South Agric Sci, 2022, 53(2): 430-440. | |
[25] | Liu N, Jacquemyn H, Liu Q, et al. Effects of a dark septate fungal endophyte on the growth and physiological response of seedlings to drought in an epiphytic orchid[J]. Fron Microbiol, 2022, 13: 961172. |
[26] |
Wang Z, Solanki MK, Yu ZX, et al. Draft genome analysis offers insights into the mechanism by which streptomyces chartreusis WZS021 increases drought tolerance in sugarcane[J]. Front Microbiol, 2018, 9: 3262.
doi: 10.3389/fmicb.2018.03262 URL |
[27] |
Wu HH, Zou YN, Rahman M, et al. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress[J]. Sci rep, 2017, 7(1): 1-10.
doi: 10.1038/s41598-016-0028-x |
[28] | 李其勇, 朱从桦, 李星月, 等. 水稻芽期抗旱性综合评价及鉴定指标鉴选[J]. 西北农业学报, 2023, 32(1): 18-32. |
Li QY, Zhu CH, Li XY, et al. Comprehensive evaluation and identification index of drought resistance at germination stage of rice[J]. Acta Agric Boreali-occidentalis Sin, 2023, 32(1): 18-32. |
[1] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[4] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[5] | HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus [J]. Biotechnology Bulletin, 2023, 39(10): 163-174. |
[6] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[7] | ZHANG Jing, YOU Chui-huai, CAO Yue, CUI Tian-zhen, YANG Jing-tao, LUO Jun. Sugarcane Rhizosphere Microecology and Its Relationship with Smut Control [J]. Biotechnology Bulletin, 2022, 38(11): 21-31. |
[8] | YANG Fu-rong, WANG Xiao-hong, XIAO Qi, FANG Juan, LI Li-hua. Physiological Response of Hibiscus syriacus Varieties to Cadmium Stress and Evaluation of Cadmium Tolerance [J]. Biotechnology Bulletin, 2022, 38(1): 98-107. |
[9] | LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level [J]. Biotechnology Bulletin, 2021, 37(8): 243-252. |
[10] | FENG Cui-lian, WAN Yue, WANG Jun-gang, FENG Xiao-yan, ZHAO Ting-ting, WANG Wen-zhi, SHEN Lin-bo, ZHANG Shu-zhen. Establishment of a Transformant-specific Detection Method for Cry1Ac-2A-gna Transgenic Sugarcane BCG-17 [J]. Biotechnology Bulletin, 2021, 37(5): 248-258. |
[11] | JIANG Bai-yang, BAI Wen-bin, ZHANG Jiang-hua, FAN Na, SHI Li-juan. Advances in Studies on Identification Methods and Molecular Biology of Drought Resistance in Sorghum [J]. Biotechnology Bulletin, 2021, 37(4): 260-272. |
[12] | WANG Ling, XIANG Wen-zhou, WEI Hua-ning, LV Jin-ting, WU Hua-lian, WU Hou-bo. Study on the Algicidal Characteristics and Physiological Response of Microbacterium sp. CBA01 to Phaeocystis globosa [J]. Biotechnology Bulletin, 2021, 37(10): 91-99. |
[13] | FENG Cui-lian, ZHANG Shu-zhen. Breeding of Transgenic Insect-resistant Sugarcane and Strategies for Preventing the Its Resistance to Insects from Loss [J]. Biotechnology Bulletin, 2020, 36(7): 209-219. |
[14] | ZHAI Nan-xin, CHI Hui, XIA Yue-lin, LIU Cai-yue, PEI Xin-wu, YUAN Qian-hua. Transcriptome Analysis of Drought-resistant Genes in Hainan Shanlan Upland Rice [J]. Biotechnology Bulletin, 2020, 36(12): 12-20. |
[15] | GAN Chong-kun, ZHOU Hui-wen, CHEN Rong-fa, FAN Ye-geng, QIU Li-hang, HUANG Xing, LI Yang-rui, LU Xing-gao, WU Jian-ming. Application of Chemical Regulating Technology in Sugarcane Production [J]. Biotechnology Bulletin, 2019, 35(2): 163-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||