Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 229-236.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0152
Previous Articles Next Articles
LI Ying(), SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia()
Received:
2023-02-22
Online:
2023-12-26
Published:
2024-01-11
Contact:
ZHANG Xia
E-mail:li1989ying0921@163.com;zhangxia2259@126.com
LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects[J]. Biotechnology Bulletin, 2023, 39(12): 229-236.
Fig. 3 Determination of antagonistic activity of ZHX-7 bacterial suspension against four pathogens A: Antagonistic effect of ZHX-7 on four peanut pathogens. B: Statistics of colony growth of pathogens. C: Statistics of inhibition rate of ZHX-7 against four peanut pathogens. ** indicates extremely significant differences at 0.01 level. The same below
处理Treatment | 鲜质量Fresh mass/g | 干质量Dry mass/g | 死亡率Mortality/% | 病情指数Disease index | 防效Efficacy/% |
---|---|---|---|---|---|
CK | 10.47±0.74 A | 1.48±0.10 A | 56.67±5.77 A | 85.42±3.15 A | / |
ZHX-7 | 13.74±0.96 B | 1.88±0.11 B | 18.33±2.89 B | 41.25±3.31 B | 51.76±2.13 |
Table1 Control effect of ZHX-7 on peanut growth and peanut Sclerotium blight
处理Treatment | 鲜质量Fresh mass/g | 干质量Dry mass/g | 死亡率Mortality/% | 病情指数Disease index | 防效Efficacy/% |
---|---|---|---|---|---|
CK | 10.47±0.74 A | 1.48±0.10 A | 56.67±5.77 A | 85.42±3.15 A | / |
ZHX-7 | 13.74±0.96 B | 1.88±0.11 B | 18.33±2.89 B | 41.25±3.31 B | 51.76±2.13 |
[1] | 张霞, 许曼琳, 郭志青, 等. 暹罗芽孢杆菌ZHX-10的分离鉴定及其对花生白绢病的生防效果[J]. 中国油料作物学报, 2020, 42(4): 674-680. |
Zhang X, Xu ML, Guo ZQ, et al. Isolation and identification of Bacillus sinensis ZHX-10 and analysis on its biological control activities against Sclerotium rolfsii[J]. Chin J Oil Crop Sci, 2020, 42(4): 674-680. | |
[2] |
Bera SK, Kamdar JH, Kasundra SV, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits[J]. PLoS One, 2019, 14(12): e0226252.
doi: 10.1371/journal.pone.0226252 URL |
[3] |
Wang SY, Li LN, Fu LY, et al. Development and characterization of new allohexaploid resistant to web blotch in peanut[J]. J Integr Agric, 2021, 20(1): 55-64.
doi: 10.1016/S2095-3119(20)63228-2 URL |
[4] |
Fan PM, Song WD, Kang YP, et al. Phenotypic identification of peanut germplasm for resistance to southern stem rot[J]. Oil Crop Sci, 2020, 5(4): 174-179.
doi: 10.1016/j.ocsci.2020.12.001 URL |
[5] |
Xu ML, Zhang X, Guo ZQ, et al. First report of peanut foot rot caused by Fusarium neocosmosporiellum in Shandong Province, China[J]. J Plant Pathol, 2021, 103(3): 1059-1060.
doi: 10.1007/s42161-021-00867-5 |
[6] |
Zhang X, Xu ML, Wu JX, et al. Draft genome sequence of Phoma arachidicola Wb2 causing peanut web blotch in China[J]. Curr Microbiol, 2019, 76(2): 200-206.
doi: 10.1007/s00284-018-1612-z pmid: 30535834 |
[7] |
Zhang X, Xu ML, Yu J, et al. First report of Alternaria alternata causing peanut grey blight in China[J]. J Plant Pathol, 2021, 103(2): 677.
doi: 10.1007/s42161-021-00766-9 |
[8] | Andrés JA, Pastor NA, Ganuza M, et al. Biopesticides: an eco-friendly approach for the control of soilborne pathogens in peanut[M]// SinghD, SinghH, PrabhaR. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer, 2016: 161-179. |
[9] |
Subandar I, Hakim L, Suliansyah I, et al. Identification of antagonistic bacteria against peanut stem rot disease(Sclerotium rolfsii Sacc.) on the peatland of Kuala Pesisir-Nagan Raya, Indonesia[J]. IOP Conf Ser: Earth Environ Sci, 2021, 637(1): 012063.
doi: 10.1088/1755-1315/637/1/012063 |
[10] |
Neelipally RTKR, Anoruo AO, Nelson S. Effect of co-inoculation of Bradyrhizobium and Trichoderma on growth, development, and yield of Arachis hypogaea L.(peanut)[J]. Agronomy, 2020, 10(9): 1415.
doi: 10.3390/agronomy10091415 URL |
[11] |
Guo ZQ, Zhang X, Wu JX, et al. In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production[J]. Biol Contr, 2020, 143: 104188.
doi: 10.1016/j.biocontrol.2020.104188 URL |
[12] | Illa C, Pérez AA, Torassa M, et al. Effect of biocontrol and promotion of peanut growth by inoculating Trichoderma harzianum and Bacillus subtilis under controlled conditions and field[J]. Rev Mex De Fitopatología Mex J Phytopathol, 2019, 38(1): 119-131. |
[13] |
Cook RJ. Making greater use of introduced microorganisms for biological control of plant pathogens[J]. Annu Rev Phytopathol, 1993, 31: 53-80.
pmid: 18643761 |
[14] | 董国菊. 荧光假单胞菌Pseudomonas fluorescens P-72-10菌株对烟草黑胫病的生防机理研究[D]. 重庆: 西南大学, 2012. |
Dong GJ. Biocontrol mechanisms of Pseudomonas fluorescens strain P-72-10 on black shank disease of tobacco[D]. Chongqing: Southwest University, 2012. | |
[15] | 张霞, 许曼琳, 于静, 等. 暹罗芽孢杆菌ZHX-10对花生冠腐病的生防效果[J]. 花生学报, 2020, 49(4): 52-56. |
Zhang X, Xu ML, Yu J, et al. Biological control of Bacillus sinensis ZHX-10 on peanut crown rot[J]. J Peanut Sci, 2020, 49(4): 52-56. | |
[16] | 邹秋霞, 任佐华, 高诗涵, 等. 枯草芽胞杆菌YN145分离鉴定及抑菌活性[J]. 中国生物防治学报, 2017, 33(3): 421-426. |
Zou QX, Ren ZH, Gao SH, et al. Isolation and identification of Bacillus subtilis YN145 against Magnaporthe oryzae and its antimicrobial activities[J]. Chin J Biol Contr, 2017, 33(3): 421-426. | |
[17] |
Gao ZF, Zhang BJ, Liu HP, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biol Contr, 2017, 105: 27-39.
doi: 10.1016/j.biocontrol.2016.11.007 URL |
[18] |
Raymaekers K, Ponet L, Holtappels D, et al. Screening for novel biocontrol agents applicable in plant disease management - A review[J]. Biol Contr, 2020, 144: 104240.
doi: 10.1016/j.biocontrol.2020.104240 URL |
[19] | 沙月霞. 防治稻瘟病芽胞杆菌的筛选及生防机制研究[D]. 北京: 中国农业大学, 2016. |
Sha YX. Screening of Bacillus strains against rice blast and research of biocontrol mechanism[D]. Beijing: China Agricultural University, 2016. | |
[20] |
Liu Y, Teng K, Wang T, et al. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize[J]. J Appl Microbiol, 2020, 128(1): 242-254.
doi: 10.1111/jam.14459 pmid: 31559664 |
[21] |
Chen L, Wu YD, Chong XY, et al. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii[J]. J Appl Microbiol, 2020, 128(3): 803-813.
doi: 10.1111/jam.14508 pmid: 31705716 |
[22] |
Chen L, Shi H, Heng JY, et al. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiol Res, 2019, 218: 41-48.
doi: 10.1016/j.micres.2018.10.002 URL |
[23] |
Abdelkhalek A, Behiry SI, Al-Askar AA. Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus[J]. Agronomy, 2020, 10(9): 1312.
doi: 10.3390/agronomy10091312 URL |
[24] |
Chen MC, Wang JP, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiol, 2020, 20(1): 160.
doi: 10.1186/s12866-020-01851-2 |
[25] |
Xu ML, Zhang X, Yu J, et al. Biological control of peanut southern blight(Sclerotium rolfsii)by the strain Bacillus pumilus LX11[J]. Biocontrol Sci Technol, 2020, 30(5): 485-489.
doi: 10.1080/09583157.2020.1725441 URL |
[26] |
臧超群, 赵颖, 谢瑾卉, 等. 贝莱斯芽胞杆菌BP-1筛选、鉴定及其对花生网斑病的田间防效评价[J]. 中国生物防治学报, 2021, 37(2): 259-265.
doi: 10.16409/j.cnki.2095-039x.2021.02.004 |
Zang CQ, Zhao Y, Xie JH, et al. Screening and identification of Bacillus velezensis strain BP-1 and the field control efficiency against peanut web blotch[J]. Chin J Biol Contr, 2021, 37(2): 259-265. | |
[27] |
缪伏荣, 陈鑫珠, 邱华玲, 等. 一株贝莱斯芽孢杆菌的分离与鉴定[J]. 中国农学通报, 2021, 37(18): 109-116.
doi: 10.11924/j.issn.1000-6850.casb2020-0460 |
Miao FR, Chen XZ, Qiu HL, et al. A strain of Bacillus velezensis: isolation and identification[J]. Chin Agric Sci Bull, 2021, 37(18): 109-116. | |
[28] |
Toral L, Rodríguez M, Béjar V, et al. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1[J]. Microorganisms, 2020, 8(7): 992.
doi: 10.3390/microorganisms8070992 URL |
[29] |
Maheswari NU, Sirchabai TP. Effect of Trichoderma species on Pythium aphanidermatum causing rhizome rot of turmeric[J]. Biosci, Biotechnol Res Asia, 2011, 8(2): 723-728.
doi: 10.13005/bbra/925 URL |
[1] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[2] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[3] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[4] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[5] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
[6] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
[7] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[8] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[9] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
[10] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[11] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[12] | ZHANG Lin-lin, SHEN Hu-sheng, YANG Bing, HE Meng-han, PIAO Feng-zhi, SHEN Shun-shan. Control Ability and Identification of Biocontrol Agent HK11-9 Against Corynespora Leaf Spot of Cucumber [J]. Biotechnology Bulletin, 2023, 39(12): 209-218. |
[13] | DONG Yi-hua, WANG Ling-xiao, REN Han-xue, CHEN Feng. Isolation and Identification of a Psychrotolerant Heterotrophic Nitrification-aerobic Denitrification Bacterium and Its Nitrogen-removing Characteristics [J]. Biotechnology Bulletin, 2023, 39(12): 237-249. |
[14] | CHE Yong-mei, LIU Guang-chao, GUO Yan-ping, YE Qing, ZHAO Fang-gui, LIU Xin. Preparation of Compound Halotolerant Bioinoculant and Study on Its Growth-promoting Effect [J]. Biotechnology Bulletin, 2023, 39(11): 217-225. |
[15] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2099
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||