Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (12): 320-328.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1469
Previous Articles Next Articles
WEI Ting-liu1(), MIAO Hua-biao1,2, WU Qian1,2, HUANG Zun-xi1,2()
Received:
2022-11-29
Online:
2023-12-26
Published:
2024-01-11
Contact:
HUANG Zun-xi
E-mail:wtl18468283070@163.com;huangzunxi@163.com
WEI Ting-liu, MIAO Hua-biao, WU Qian, HUANG Zun-xi. Heterologous Expression, Enzymatic Characterization of Laccase BmLac and Degradation of Gossypol by It[J]. Biotechnology Bulletin, 2023, 39(12): 320-328.
Fig. 1 Identification of XP-13 strain A: Gel electrophoresis of 16S rDNA. B: Light micrograph of strain XP-13 bacteriop-hage. C: Phylogenetic tree construction of strain XP-13 based on 16S rDNA
Fig. 2 Analysis of laccase BmLac A : The secondary structure of BmLac. B: The 3D structure of BmLac with 1GSK homology (purple indicates β-sheet. Blue indicates α-helix)
Fig. 3 BmLac and pPic9k gel electrophoresis A: Gel electrophoresis map of BmLac gene. B: Gel electrophoresis map of pPic9k double digestion. 1 : Target band; M: DNA maker
Fig. 4 SDS-PAGE of BmLac M: Protein maker. 1: Inactivated BmLac crude enzyme solution. 2: 0.5 mmol/L ABTS staining BmLac crude enzyme solution for 1 h
试剂 Reagent | 相对酶活1 Relative activity 1/% | 相对酶活2 Relative activity 2/% |
---|---|---|
None | 100±1.43 | 100±4.20 |
CuSO4 | 193.09±5.05 | 98.71±2.44 |
MnSO4 | 102.05±1.99 | 96.56±3.25 |
Pb(CH3CO2)2 | 99.69±2.78 | 69.35±6.03 |
MgSO4 | 98.36±2.15 | 97.15±4.36 |
ZnSO4 | 98.26±1.13 | 86.13±4.69 |
NiSO4 | 94.32±1.63 | 61.77±0.43 |
KCl | 93.15±3.11 | 58.60±5.83 |
NaCl | 90.74±0.49 | 59.52±1.77 |
CaCl2 | 90.33±2.07 | 45.32±4.09 |
FeCl3 | 90.43±1.83 | 0.00 |
LiCl | 88.34±1.78 | 65.11±3.04 |
CoCl2 | 84.30±3.28 | 19.84±1.26 |
AlCl3 | 71.92±2.70 | 0.00 |
Fe SO4 | 2.92±0.80 | 0.00 |
Guanidine hydrochloride | 95.40±3.40 | 69.68±2.12 |
Urea | 92.53±2.93 | 103.49±3.87 |
EDTA | 86.75±1.29 | 42.37±1.25 |
Table 1 Effects of metal ions and chemical reagents on BmLac
试剂 Reagent | 相对酶活1 Relative activity 1/% | 相对酶活2 Relative activity 2/% |
---|---|---|
None | 100±1.43 | 100±4.20 |
CuSO4 | 193.09±5.05 | 98.71±2.44 |
MnSO4 | 102.05±1.99 | 96.56±3.25 |
Pb(CH3CO2)2 | 99.69±2.78 | 69.35±6.03 |
MgSO4 | 98.36±2.15 | 97.15±4.36 |
ZnSO4 | 98.26±1.13 | 86.13±4.69 |
NiSO4 | 94.32±1.63 | 61.77±0.43 |
KCl | 93.15±3.11 | 58.60±5.83 |
NaCl | 90.74±0.49 | 59.52±1.77 |
CaCl2 | 90.33±2.07 | 45.32±4.09 |
FeCl3 | 90.43±1.83 | 0.00 |
LiCl | 88.34±1.78 | 65.11±3.04 |
CoCl2 | 84.30±3.28 | 19.84±1.26 |
AlCl3 | 71.92±2.70 | 0.00 |
Fe SO4 | 2.92±0.80 | 0.00 |
Guanidine hydrochloride | 95.40±3.40 | 69.68±2.12 |
Urea | 92.53±2.93 | 103.49±3.87 |
EDTA | 86.75±1.29 | 42.37±1.25 |
[24] |
Givaudan A, Effosse A, Faure D, et al. Polyphenol oxidase in Azos-pirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum[J]. FEMS Microbiol Lett, 1993, 108(2): 205-210.
doi: 10.1111/fml.1993.108.issue-2 URL |
[25] |
Yang S, Long Y, et al. Gene cloning, identification, and characterization of the multicopper oxidase CumA from Pseudomonas sp. 593[J]. Biotechnol Appl Biochem, 2017, 64(3): 347-355.
doi: 10.1002/bab.2017.64.issue-3 URL |
[26] |
Zeng J, Lin XG, Zhang J, et al. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli[J]. Appl Microbiol Biotechnol, 2011, 89(6): 1841-1849.
doi: 10.1007/s00253-010-3009-1 pmid: 21120471 |
[27] |
Qiao WC, Chu JP, Ding SJ, et al. Characterization of a thermo-alkali-stable laccase from Bacillus subtilis cjp3 and its application in dyes decolorization[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2017, 52(8): 710-717.
doi: 10.1080/10934529.2017.1301747 URL |
[28] |
Brander S, Mikkelsen JD, Kepp KP. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacil-lus clausii[J]. PLoS One, 2014, 9(6): e99402.
doi: 10.1371/journal.pone.0099402 URL |
[29] |
Wang HB, Huang L, Li YZ, et al. Characterization and application of a novel laccase derived from Bacillus amyloliquefaciens[J]. Int J Biol Macromol, 2020, 150: 982-990.
doi: 10.1016/j.ijbiomac.2019.11.117 URL |
[30] |
Lu L, Wang TN, Xu TF, et al. Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization[J]. Bioresour Technol, 2013, 134: 81-86.
doi: 10.1016/j.biortech.2013.02.015 URL |
[31] |
Reiss R, Ihssen J, Thöny-Meyer L. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum[J]. BMC Biotechnol, 2011, 11: 9.
doi: 10.1186/1472-6750-11-9 |
[32] |
Wan J, Sun XW, Liu C, et al. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase[J]. World J Microbiol Biotechnol, 2017, 33(6): 123.
doi: 10.1007/s11274-017-2290-x URL |
[33] |
Wang L, Chen M, Luo XC, et al. Intramolecular annulation of gossypol by laccase to produce safe cottonseed protein[J]. Front Chem, 2020, 8: 583176.
doi: 10.3389/fchem.2020.583176 URL |
[34] | 张乐珊. 重组漆酶OhLac的分子改造及其降解性能研究[D]. 杨凌: 西北农林科技大学, 2022. |
Zhang LS. Molecular modification and degradation of recombinant laccase OhLac[D]. Yangling: Northwest A & F University, 2022. | |
[35] |
周梦宇, 古丽斯坦·阿不来提, 姚军, 等. 高效液相色谱法同时测定棉籽油中游离棉酚及其降解产物四甲氧基棉酚含量[J]. 食品科学, 2019, 40(16): 261-266.
doi: 10.7506/spkx1002-6630-20180926-282 |
Zhou MY, Abulaiti G, Yao J, et al. Simultaneous determination of free gossypol and its degradation product tetramethoxy gossypol in commercially available cottonseed oil by high performance liquid chromatography[J]. Food Sci, 2019, 40(16): 261-266. | |
[36] | Gadelha ICN, Fonseca NBS, Oloris SCS, et al. Gossypol toxicity from cottonseed products[J]. Sci World J, 2014, 231635. |
[37] |
王雨辰, 丁尊丹, 关菲菲, 等. 耐热漆酶ba4基因鉴定与酶学性质分析[J]. 生物技术通报, 2022, 38(8): 252-260.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1422 |
Wang YC, Ding ZD, Guan FF, et al. Identification and characterization of heat-resistant laccase Ba4 gene[J]. Biotechnol Bull, 2022, 38(8): 252-260. | |
[38] |
Sharma P, Goel R, Capalash N. Bacterial laccases[J]. World J Microbiol Biotechnol, 2007, 23(6): 823-832.
doi: 10.1007/s11274-006-9305-3 URL |
[39] |
El-Bendary MA, Ezzat SM, et al. Optimization of spore laccase production by Bacillus amyloliquefaciens isolated from wastewater and its potential in green biodecolorization of synthetic textile dyes[J]. Prep Biochem Biotechnol, 2021, 51(1): 16-27.
doi: 10.1080/10826068.2020.1786698 URL |
[40] | You LF, Liu ZM, Lin JF, et al. Molecular cloning of a laccase gene from Ganoderma lucidum and heterologous expression in Pichia pastoris[J]. J Basic Microbiol, 2014, 54(Suppl 1): S134-S141. |
[41] | Radveikienė I, Vidžiūnaitė R, Meškienė R, et al. Characterization of a yellow laccase from Botrytis cinerea 241[J]. J Fungi(Basel), 2021, 7(2): 143. |
[42] |
Li T, Chu XX, Yuan ZT, et al. Biochemical and structural properties of a high-temperature-active laccase from Bacillus pumilus and its application in the decolorization of food dyes[J]. Foods, 2022, 11(10): 1387.
doi: 10.3390/foods11101387 URL |
[43] |
Zhang WR, Wang WW, Wang JH, et al. Isolation and characterization of a novel laccase for lignin degradation, LacZ1[J]. Appl Environ Microbiol, 2021, 87(23): e0135521.
doi: 10.1128/AEM.01355-21 URL |
[44] |
Lin JH, Liu YJ, Chen S, et al. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal[J]. Int J Biol Macromol, 2016, 84: 189-199.
doi: 10.1016/j.ijbiomac.2015.12.013 pmid: 26691384 |
[45] | Irshad M. Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks[J]. Afr J Biotechnol, 2011, 10(79): 18234-18242. |
[1] |
Rehemujiang H, Yimamu A, Wang YL. Effect of dietary cotton stalk on nitrogen and free gossypol metabolism in sheep[J]. Asian-Australas J Anim Sci, 2019, 32(2): 233-240.
doi: 10.5713/ajas.18.0057 URL |
[2] |
Zhang YH, Zhang ZY, et al. Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis[J]. Asian-Australas J Anim Sci, 2018, 31(1): 63-70.
doi: 10.5713/ajas.17.0018 URL |
[3] |
Wang WK, Wang YL, Li WJ, et al. In situ rumen degradation characteristics and bacterial colonization of whole cottonseed, cottonseed hull and cottonseed meal with different gossypol content[J]. AMB Expr, 2021, 11(1): 91.
doi: 10.1186/s13568-021-01244-2 |
[4] |
宣秋希, 乔琳, 侯晓林, 等. 固态生料发酵棉籽粕菌种筛选及发酵工艺的研究[J]. 动物营养学报, 2022, 34(5): 3376-3391.
doi: 10.3969/j.issn.1006-267x.2022.05.062 |
Xuan QX, Qiao L, Hou XL, et al. Screening of strains for solid-state fermentation of raw cottonseed meal and study on fermentation technology[J]. Chin J Animal Nutr, 2022, 34(5): 3376-3391. | |
[5] |
Tian X, Ruan JX, Huang JQ, et al. Gossypol: phytoalexin of cotton[J]. Sci China Life Sci, 2016, 59(2): 122-129.
doi: 10.1007/s11427-016-5003-z pmid: 26803304 |
[6] |
Santana AT, Guelfi M, Medeiros HCD, et al. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E[J]. Biol Res, 2015, 48(1): 43.
doi: 10.1186/s40659-015-0026-7 URL |
[7] |
Mena H, Santos JE, Huber JT, et al. The effects of feeding varying amounts of gossypol from whole cottonseed and cottonseed meal in lactating dairy cows[J]. J Dairy Sci, 2001, 84(10): 2231-2239.
pmid: 11699455 |
[8] |
Tang JW, Sun H, et al. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers[J]. Asian-Australas J Anim Sci, 2012, 25(3): 393-400.
doi: 10.5713/ajas.2011.11381 URL |
[9] |
Liu YX, Wang LL, Zhao L, et al. Structure, properties of gossypol and its derivatives—from physiological activities to drug discovery and drug design[J]. Nat Prod Rep, 2022, 39(6): 1282-1304.
doi: 10.1039/D1NP00080B URL |
[10] |
Wang X, Howell CP, Chen F, et al. Gossypol—a polyphenolic compound from cotton plant[J]. Adv Food Nutr Res, 2009, 58: 215-263.
doi: 10.1016/S1043-4526(09)58006-0 pmid: 19878861 |
[11] | 胡雷雨, 徐方旭, 高岩, 等. 棉籽饼粕综合利用及发展趋势研究[J]. 园艺与种苗, 2017, 37(11): 74-76. |
Hu LY, Xu FX, Gao Y, et al. Study on the comprehensive utilization and development trend of cottonseed cake[J]. Hortic Seed, 2017, 37(11): 74-76. | |
[12] |
Zhang WJ, Xu ZR, Sun JY, et al. Effect of selected fungi on the reduction of gossypol levels and nutritional value during solid substrate fermentation of cottonseed meal[J]. J Zhejiang Univ - Sci B, 2006, 7(9): 690-695.
doi: 10.1631/jzus.2006.B0690 URL |
[13] |
Nikolaivits E, Siaperas R, Agrafiotis A, et al. Functional and transcriptomic investigation of laccase activity in the presence of PCB29 identifies two novel enzymes and the multicopper oxidase repertoire of a marine-derived fungus[J]. Sci Total Environ, 2021, 775: 145818.
doi: 10.1016/j.scitotenv.2021.145818 URL |
[14] |
Janusz G, Pawlik A, Świderska-Burek U, et al. Laccase properties, physiological functions, and evolution[J]. Int J Mol Sci, 2020, 21(3): 966.
doi: 10.3390/ijms21030966 URL |
[15] |
Malhotra M, Suman SK. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation[J]. Environ Sci Pollut Res, 2021, 28(42): 58929-58944.
doi: 10.1007/s11356-021-13283-0 |
[16] |
Mao GT, Wang K, Wang FY, et al. An engineered thermostable laccase with great ability to decolorize and detoxify malachite green[J]. Int J Mol Sci, 2021, 22(21): 11755.
doi: 10.3390/ijms222111755 URL |
[17] |
Gupta V, Balda S, Gupta N, et al. Functional substitution of domain 3(T1 copper center)of a novel laccase with Cu ions[J]. Int J Biol Macromol, 2019, 123: 1052-1061.
doi: 10.1016/j.ijbiomac.2018.11.174 URL |
[18] |
Karittapattawan P, Benchawattananon R. Evaluation of laccase production by monokaryotic strains of edible mushrooms[J]. Pak J Biol Sci, 2021, 24(4): 454-460.
doi: 10.3923/pjbs.2021.454.460 pmid: 34486304 |
[19] |
Le TT, Murugesan K, Lee CS, et al. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads[J]. Bioresour Technol, 2016, 216: 203-210.
doi: 10.1016/j.biortech.2016.05.077 URL |
[20] |
Martins LO, Durão P, Brissos V, et al. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology[J]. Cell Mol Life Sci, 2015, 72(5): 911-922.
doi: 10.1007/s00018-014-1822-x pmid: 25572294 |
[21] |
Cheng CM, Patel AK, Singhania RR, et al. Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green[J]. Bioresour Technol, 2021, 340: 125708.
doi: 10.1016/j.biortech.2021.125708 URL |
[22] |
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: recent update on production, properties and industrial applications[J]. 3 Biotech, 2017, 7(5): 323.
doi: 10.1007/s13205-017-0955-7 pmid: 28955620 |
[23] |
Guan ZB, Luo Q, Wang HR, et al. Bacterial laccases: promising biological green tools for industrial applications[J]. Cell Mol Life Sci, 2018, 75(19): 3569-3592.
doi: 10.1007/s00018-018-2883-z |
[1] | WANG Yu-chen, DING Zun-dan, GUAN Fei-fei, TIAN Jian, LIU Guo-an, WU Ning-feng. Identification of the Thermostable Laccase Gene ba4 and Characterization of Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(8): 252-260. |
[2] | JIA Chen-bo, SU Yi-huang, MA Xiu-mei, WANG Chun-li, XU Chun-yan. Medium Optimization for Laccase Production by Acrophialophora sp. Z45 and Its Decolorization of Dyes [J]. Biotechnology Bulletin, 2022, 38(6): 252-260. |
[3] | NIU Xin, ZHANG Ying, WANG Mao-jun, LIU Wen-long, LU Fu-ping, LI Yu. Effects of Different Integration Sites on the Expression of Exogenous Alkaline Protease in Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2022, 38(4): 253-260. |
[4] | MAO Guo-tao, WANG Jie, WANG Kai, WANG Fang-yuan, CAO Le-yan, ZHANG Hong-sen, SONG An-dong. Characterization of Laccase TaLac from Thermus aquaticus and Its Application in Removing Malachite Green Dye [J]. Biotechnology Bulletin, 2022, 38(4): 261-268. |
[5] | CEN Xiao-long, LEI Xi, MA Shi-yun, CHEN Qian-ru, HUANG Zun-xi, ZHOU Jun-pei, ZHANG Rui. Heterologous Expression and Characterization of the Hyaluronic Acid Lyase HylS from Staphylococcus aureus [J]. Biotechnology Bulletin, 2022, 38(1): 157-167. |
[6] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[7] | CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258. |
[8] | XIONG Xue, LI Peng, ZHANG Gui-he, XIANG Zhun, TAO Wen-Guang, ZHOU Guang-yan, HE Yao-wei. Effects of Different Cultivation Substrates on the Laccase Activities of Lentinula edodes During Liquid Fermentation [J]. Biotechnology Bulletin, 2021, 37(12): 50-59. |
[9] | WANG Hao, TANG Lu-xin, MA Hong-fei, QIAN Kun, SI Jing, CUI Bao-kai. Immobilization of Laccase from Trametes orientalis and Its Application for Decolorization of Multifarious Dyes [J]. Biotechnology Bulletin, 2021, 37(11): 142-157. |
[10] | CHEN Hui-ling, ZHANG Qing-yun, SUN Kai. Laccase-Mediated Oxidative Coupling of Phenolic Compounds in vivo:from Fundamentals to Multifunctional Applications in Green Synthesis [J]. Biotechnology Bulletin, 2020, 36(5): 193-204. |
[11] | SUN Kai, CHEN Zheng-jie, WANG Deng-yang, SHU Ru-yu, WU Ji, WEI Fan. Removal of Bisphenol A in Wastewater by Immobilized Laccase [J]. Biotechnology Bulletin, 2020, 36(12): 188-198. |
[12] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Medium Optimization for the Laccase Production by White Rot Fungus Porodaedalea laricis and Its Dye Decolorizing Capacity [J]. Biotechnology Bulletin, 2020, 36(1): 45-59. |
[13] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Advances on Properties,Production,Purification and Immobilization of Fungal Laccase [J]. Biotechnology Bulletin, 2019, 35(9): 1-10. |
[14] | HU Chu-xiao, LEI Shan-yu, QIN Yan-ping, ZHAO Yi-jin, XIANG Quan-ju. Influence of Anthracene on Laccase Activity and Transcriptional Expression Profiles of Ganoderma lucidum [J]. Biotechnology Bulletin, 2019, 35(9): 112-117. |
[15] | DONG Cong, GAO Qing-hua, WANG Yue, LUO Tong-yang. Expression and Enzymatic Characterization of Codon-optimized FAD-dependent Glucose Dehydrogenase in Pichia pastoris [J]. Biotechnology Bulletin, 2019, 35(7): 114-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||