Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 116-125.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0551
Previous Articles Next Articles
ZHAO Meng-liang1,2(), GUO Yi-ting1, REN Yan-jing1,2()
Received:
2022-05-05
Online:
2023-02-26
Published:
2023-03-07
ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus[J]. Biotechnology Bulletin, 2023, 39(2): 116-125.
[1] | Smekalova TN, Lebedeva NV, Novikova LY. Morphological analysis of Jerusalem artichoke(Helianthus tuberosus L.)accessions of different origin from VIR collection[J]. Proc Latv Acad Sci Sect B Nat Exact Appl Sci, 2019, 73(6): 502-512. |
[2] |
Baldini M, Danuso F, Turi M, et al. Evaluation of new clones of Jerusalem artichoke(Helianthus tuberosus L.)for inulin and sugar yield from stalks and tubers[J]. Ind Crops Prod, 2004, 19(1): 25-40.
doi: 10.1016/S0926-6690(03)00078-5 URL |
[3] | Favale S, Ciolfi G, Moretti S. Optimization of Bioethanol production from Jerusalem artichokes powder and fresh tubers[J]. Global Advanced Research Journals, 2014, 3(5): 72-77. |
[4] | Kiru S, Nasenko I. Use of genetic resources from Jerusalem artichoke collection of N. Vavilov institute in breeding for bioenergy and health security[J]. Agronomy Research, 2010, 8: 625-632. |
[5] |
Puttha R, Jogloy S, Suriharn B, et al. Variations in morphological and agronomic traits among Jerusalem artichoke(Helianthus tuberosusL.)accessions[J]. Genet Resour Crop Evol, 2013, 60(2): 731-746.
doi: 10.1007/s10722-012-9870-2 URL |
[6] |
Seiler GJ, Campbell LG. Genetic variability for mineral concentration in the forage of Jerusalem artichoke cultivars[J]. Euphytica, 2006, 150(1/2): 281-288.
doi: 10.1007/s10681-006-9119-2 URL |
[7] |
Zhao ML, Ren YJ, Wei W, et al. Metabolite analysis of Jerusalem artichoke(Helianthus tuberosus L.)seedlings in response to polyethylene glycol-simulated drought stress[J]. Int J Mol Sci, 2021, 22(7): 3294.
doi: 10.3390/ijms22073294 URL |
[8] | Viriyasuthee W, Jogloy S, Saksirirat W, et al. Biological control of Alternaria leaf spot caused by Alternaria spp. in Jerusalem artichoke(Helianthus tuberosus L.)under two fertilization regimes[J]. Plants(Basel), 2019, 8(11): 463. |
[9] |
Viriyasuthee W, Saksirirat W, Saepaisan S, et al. Variability of Alternaria leaf spot resistance in Jerusalem artichoke(Helianthus tuberosus L.)accessions grown in a humid tropical region[J]. Agronomy, 2019, 9(6): 268.
doi: 10.3390/agronomy9060268 URL |
[10] |
Zhao ML, Zhong QW, Tian MY, et al. Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber(Helianthus tuberosus L.)[J]. Ind Crops Prod, 2020, 151: 112455.
doi: 10.1016/j.indcrop.2020.112455 URL |
[11] | Breton C, Kiru SD, Bervillé A, et al. Breeding of Jerusalem artichoke with the desired traits for different directions of use: retrospective, approaches, and prospects(review)[J]. S-h Biol, 2017, 52(5): 940-951. |
[12] | Curt MD, Aguado PL, Sanz M, et al. On the use of the stalks of Helianthus tuberosus L. for bioethanol production[C]// 2005 AAIC Annual Meeting: International Conference on Industrial Crops and Rural Development, Spain, 2005. |
[13] |
Rawate PD, Hill RM. Extraction of a high-protein isolate from Jerusalem artichoke(Helianthus tuberosus)tops and evaluation of its nutrition potential[J]. J Agric Food Chem, 1985, 33(1): 29-31.
doi: 10.1021/jf00061a008 URL |
[14] |
Radovanovic A, Stojceska V, Plunkett A, et al. The use of dry Jerusalem artichoke as a functional nutrient in developing extruded food with low glycaemic index[J]. Food Chem, 2015, 177: 81-88.
doi: 10.1016/j.foodchem.2014.12.096 pmid: 25660861 |
[15] |
Tiengtam N, Khempaka S, Paengkoum P, et al. Effects of inulin and Jerusalem artichoke(Helianthus tuberosus)as prebiotic ingredients in the diet of juvenile Nile tilapia(Oreochromis niloticus)[J]. Animal Feed Sci Technol, 2015, 207: 120-129.
doi: 10.1016/j.anifeedsci.2015.05.008 URL |
[16] |
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5): 199-206.
doi: 10.1016/s1360-1385(00)01600-9 pmid: 10785665 |
[17] | 丁杰荣, 张静, 江立群, 等. OsWRKY67负向调控水稻耐旱性的功能分析[J/OL]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.s.20211209.1851.012.html. |
Ding JR, Zhang J, Jiang LQ, et al. Functional analysis of OsWRKY67 in negatively regulating drought-tolerance in rice[J/OL]. Mol Plant Breed, 2021. http://kns.cnki.net/kcms/detail/46.1068.s.20211209.1851.012.html. | |
[18] |
Choi C, Hwang SH, Fang IR, et al. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related(PR)10a promoter and confers reduced susceptibility to pathogens[J]. New Phytol, 2015, 208(3): 846-859.
doi: 10.1111/nph.13516 URL |
[19] |
Wang Z, Zhu Y, Wang LL, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1)promoter[J]. Planta, 2009, 230(6): 1155-1166.
doi: 10.1007/s00425-009-1014-3 pmid: 19760263 |
[20] | 张宇欣, 刘征, 张唐权, 等. 空心菜WRKY基因家族成员鉴定与表达分析[J/OL]. 分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220507.1738.028.html. |
Zhang YX, Liu Z, Zhang TQ, et al. Genome-wide identification and expression analysis of WRKY gene family in water spinach(Ipom-oea aquatica)[J/OL]. Mol Plant Breed, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220507.1738.028.html. | |
[21] | 潘鑫峰, 叶方婷, 毛志君, 等. 睡莲WRKY家族的全基因组鉴定和分子进化分析[J]. 园艺学报, 2022, 49(5): 1121-1135 |
Pan XF, Ye FT, Mao ZJ, et al. Genomic identification and molecular evolution of the WRKY family in Nymphaea colorata[J]. Acta Hortic Sin, 2022, 49(5): 1121-1135. | |
[22] |
Zhao H, Wang S, Chen S, et al. Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii × Populus nigra[J]. Gene, 2015, 565(1): 130-139.
doi: 10.1016/j.gene.2015.04.002 pmid: 25843624 |
[23] |
Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana[J]. Eur J Cell Biol, 2010, 89(2/3): 133-137.
doi: 10.1016/j.ejcb.2009.10.014 URL |
[24] | Chu XQ, Wang C, Chen XB, et al. The cotton WRKY gene Gh-WRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(11): e0143022. |
[25] | Chen JN, Nolan TM, Ye HX, et al. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 2017, 29(6): 1425-1439. |
[26] |
Zhang XY, Yang ZR, Li Z, et al. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: identification of genes involved in resistance to drought stress[J]. Gene, 2019, 710: 375-386.
doi: 10.1016/j.gene.2019.05.055 URL |
[27] |
El-Esawi MA, Al-Ghamdi AA, Ali HM, et al. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat(Triticum aestivum L.)[J]. Genes, 2019, 10(2): 163.
doi: 10.3390/genes10020163 URL |
[28] | Ghodke P, Khandagale K, Thangasamy A, et al. Comparative transcriptome analyses in contrasting onion(Allium cepa L.)genotypes for drought stress[J]. PLoS One, 2020, 15(8): e0237457. |
[29] |
Golldack D, Li C, Mohan H, et al. Tolerance to drought and salt stress in plants: Unraveling the signaling networks[J]. Front Plant Sci, 2014, 5: 151.
doi: 10.3389/fpls.2014.00151 pmid: 24795738 |
[30] |
Zhang LC, Zhao GY, Xia C, et al. A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis[J]. J Exp Bot, 2012, 63(16): 5873-5885.
doi: 10.1093/jxb/ers237 URL |
[31] |
Babu MM, Iyer LM, Balaji S, et al. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons[J]. Nucleic Acids Res, 2006, 34(22): 6505-6520.
doi: 10.1093/nar/gkl888 pmid: 17130173 |
[32] |
Chen C, Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol, 2000, 42(2): 387-396.
doi: 10.1023/a:1006399311615 pmid: 10794538 |
[33] |
Wu XL, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep, 2009, 28(1): 21-30.
doi: 10.1007/s00299-008-0614-x URL |
[34] |
Qiu YP, Yu DQ. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environ Exp Bot, 2009, 65(1): 35-47.
doi: 10.1016/j.envexpbot.2008.07.002 URL |
[35] |
Marè C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley[J]. Plant Mol Biol, 2004, 55(3): 399-416.
doi: 10.1007/s11103-004-0906-7 pmid: 15604689 |
[36] |
王瑞, 吴华玲, 王会芳, 等. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定[J]. 作物学报, 2013, 39(11): 1944-1951.
doi: 10.3724/SP.J.1006.2013.01944 |
Wang R, Wu HL, Wang HF, et al. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat[J]. Acta Agron Sin, 2013, 39(11): 1944-1951.
doi: 10.3724/SP.J.1006.2013.01944 URL |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[5] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[6] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[7] | CHEN Hao-ting, ZHANG Yu-jing, LIU Jie, DAI Ze-min, LIU Wei, SHI Yu, ZHANG Yi, LI Tian-lai. Functional Analysis of WRKY6 Gene in Tomato Under Low-phosphorus Stress [J]. Biotechnology Bulletin, 2023, 39(10): 136-147. |
[8] | CHEN Gui-fang, YANG Jia-yi, GAO Yun-hua, REN Ge. Research Progress in Chromatin Immunoprecipitation Followed by Sequencing [J]. Biotechnology Bulletin, 2022, 38(7): 40-50. |
[9] | PAN Ying-jie, ZHANG Ying, WU Qi-man, LI Zheng-qing. A Review of WRKY Mediated Regulation of Sugar for Cold Acclimation in Horticultural Crops [J]. Biotechnology Bulletin, 2022, 38(3): 203-212. |
[10] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[11] | YU Jing, YANG Hui, YU Shi-zhou, ZHAO Hui-na, ZHENG Qing-xia, WANG Bing, LEI Bo. Construction of Yeast One-hybrid Bait Vector of Tobacco NtCBT Gene Promoter and Screening of Interacted Proteins [J]. Biotechnology Bulletin, 2022, 38(10): 73-79. |
[12] | LI Qi, WANG Yi-chao, LIU Chang, TAN He-xin. Genome-wide Identification and Bioinformatics Analysis of R2R3-MYB Transcription Factors in Artemisia annua [J]. Biotechnology Bulletin, 2021, 37(8): 65-74. |
[13] | XU Hong-yun, ZHANG En-hui, Yu Cun. Tamarix hispida Transcription Factor ThWRKY4 Binds to ARR1AT Motif to Regulate Gene Expression [J]. Biotechnology Bulletin, 2021, 37(3): 18-26. |
[14] | ZHANG Tong, LI Zhi-qiang, WU Guo-qiang. Role of WRKY Transcription Factor in Plant Response to Stresses [J]. Biotechnology Bulletin, 2021, 37(10): 203-215. |
[15] | WANG Fang, SUN Li-jiao, ZHAO Xiao-yu, WANG Jie-wan, SONG Xing-shun. Research Progresses on Plant NAC Transcription Factors [J]. Biotechnology Bulletin, 2019, 35(4): 88-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||