Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 311-320.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0967
Previous Articles Next Articles
CHEN Chu-wen1,2(), LI Jie1,2, ZHAO Rui-peng1, LIU Yuan1,2, WU Jin-bo3, LI Zhi-xiong1,2()
Received:
2022-08-02
Online:
2023-03-26
Published:
2023-04-10
CHEN Chu-wen, LI Jie, ZHAO Rui-peng, LIU Yuan, WU Jin-bo, LI Zhi-xiong. Cloning, Tissue Expression Profile and Function Prediction of GPX3 Gene in Tibetan Chicken[J]. Biotechnology Bulletin, 2023, 39(3): 311-320.
软件Software brand | 用途Usage |
---|---|
ORF Finder | 预测开放阅读框 |
DNAMAN | 核苷酸序列翻译 |
MEGA 5.0 | 构建系统进化树 |
Clustalx 2.1 | 多序列比对 |
MegAlign | 同源性分析 |
ExPASy ProtScale | 疏水性预测 |
TMHMM-2.0 | 蛋白质跨膜区分析 |
SignalP-4.1 | 信号肽预测 |
SOPMA | 蛋白质二级结构预测 |
SWISS-MODEL | 蛋白质三级结构预测 |
PSORT II | 蛋白质亚细胞定位预测 |
Net Phos 3.1 | 蛋白质磷酸化位点预测 |
STRING | 互作蛋白预测 |
Table 1 Software usage
软件Software brand | 用途Usage |
---|---|
ORF Finder | 预测开放阅读框 |
DNAMAN | 核苷酸序列翻译 |
MEGA 5.0 | 构建系统进化树 |
Clustalx 2.1 | 多序列比对 |
MegAlign | 同源性分析 |
ExPASy ProtScale | 疏水性预测 |
TMHMM-2.0 | 蛋白质跨膜区分析 |
SignalP-4.1 | 信号肽预测 |
SOPMA | 蛋白质二级结构预测 |
SWISS-MODEL | 蛋白质三级结构预测 |
PSORT II | 蛋白质亚细胞定位预测 |
Net Phos 3.1 | 蛋白质磷酸化位点预测 |
STRING | 互作蛋白预测 |
目的基因Gene | 引物序列Primer sequence(5'-3') | 登录号Accession No. | 退火温度Annealing temperature Tm/℃ |
---|---|---|---|
GSR | S: GCAAGGAGGAGAAGGTGGTG | XM_015276627.4 | 60 |
A: TTGTCAAAGTCGGCCTTGGT | |||
CAT | S: GCTGAAGCTGGGAAAAAGGATG | NM_001031215.2 | 60 |
A: TCCTGCAGTTGTATGGACGC | |||
SOD2 | S: GCCACCTACGTGAACAACCT | NM_204211.2 | 60 |
A: ACCTGAGCTGTAACATCACCTTT | |||
SOD1 | S: CAAATGGGTGTACCAGCGCA | NM_205064.2 | 60 |
A: CAAATGGGTGTACCAGCGCA | |||
HPGDS | S: CTGCACCCAAGGACCCAT | NM_205011.2 | 60 |
A: GTCTGCTCCTTCCAACCTGT | |||
GSTA3 | S: CGTCGTCCAACCAGCAGATA | NM_001001777.2 | 60 |
A: CCGTGGTCCTTCAAAACCTTC | |||
GSTA | S: GATCTCCCACAGCCGACAC | XM_046938585.1 | 60 |
A: AGCTCTCCTTTCCAGAGGGC | |||
GSS | S: TTGCTGGGCTGTACTCACTG | XM_025142428.3 | 60 |
A: ACAGGTTGTTCCCTCCTCCT | |||
SOD3 | S: TTGTGTCCGATCCCACCTCG | XM_040699307.2 | 60 |
A: CTGGTGAGTGAGAACCTGCCC | |||
PRDX6 | S: CCTGTGGACTGGAAGTGTGG | NM_001039329.3 | 60 |
A: ACGCAGGTACTTCTTGCCTG | |||
GAPDH | S: CTGCCCAGAACATCATCCCA | NM_204305.2 | 60 |
A: CGGCAGGTCAGGTCAACAAC |
Table 2 Primer information
目的基因Gene | 引物序列Primer sequence(5'-3') | 登录号Accession No. | 退火温度Annealing temperature Tm/℃ |
---|---|---|---|
GSR | S: GCAAGGAGGAGAAGGTGGTG | XM_015276627.4 | 60 |
A: TTGTCAAAGTCGGCCTTGGT | |||
CAT | S: GCTGAAGCTGGGAAAAAGGATG | NM_001031215.2 | 60 |
A: TCCTGCAGTTGTATGGACGC | |||
SOD2 | S: GCCACCTACGTGAACAACCT | NM_204211.2 | 60 |
A: ACCTGAGCTGTAACATCACCTTT | |||
SOD1 | S: CAAATGGGTGTACCAGCGCA | NM_205064.2 | 60 |
A: CAAATGGGTGTACCAGCGCA | |||
HPGDS | S: CTGCACCCAAGGACCCAT | NM_205011.2 | 60 |
A: GTCTGCTCCTTCCAACCTGT | |||
GSTA3 | S: CGTCGTCCAACCAGCAGATA | NM_001001777.2 | 60 |
A: CCGTGGTCCTTCAAAACCTTC | |||
GSTA | S: GATCTCCCACAGCCGACAC | XM_046938585.1 | 60 |
A: AGCTCTCCTTTCCAGAGGGC | |||
GSS | S: TTGCTGGGCTGTACTCACTG | XM_025142428.3 | 60 |
A: ACAGGTTGTTCCCTCCTCCT | |||
SOD3 | S: TTGTGTCCGATCCCACCTCG | XM_040699307.2 | 60 |
A: CTGGTGAGTGAGAACCTGCCC | |||
PRDX6 | S: CCTGTGGACTGGAAGTGTGG | NM_001039329.3 | 60 |
A: ACGCAGGTACTTCTTGCCTG | |||
GAPDH | S: CTGCCCAGAACATCATCCCA | NM_204305.2 | 60 |
A: CGGCAGGTCAGGTCAACAAC |
Fig. 4 Bioinformatics analysis of Tibetan chicken GPX3 gene A. Homology analysis of GPX3 gene in Tibetan chicken. B. Evolutionary tree analysis of GPX3 gene
Fig. 5 Bioinformatics analysis of Tibetan chicken GPX3 protein A. Hydrophobicity analysis of Tibetan chicken GPX3 protein. B. Transmembrane region analysis of Tibetan chicken GPX3 protein. C. Predicted signal peptide of Tibetan chicken GPX3 protein. D. Predicted phosphorylation site of Tibetan chicken GPX3 protein
Fig. 6 Bioinformatics analysis of Tibetan chicken GPX3 protein A. Prediction of the secondary structure of GPX3 protein in Tibetan chicken. B. Prediction of the tertiary structure of GPX3 protein in Tibetan chicken. C. Prediction of proteins interacting with GPX3 protein
基因 Gene | GPX3 | GSR | CAT | SOD2 | SOD1 | HPGDS | GSTA3 | GSTA | GSS | SOD3 | PRDX6 |
---|---|---|---|---|---|---|---|---|---|---|---|
GPX3 | 1 | ||||||||||
GSR | -0.330 | 1 | |||||||||
CAT | 0.383 | -0.375 | 1 | ||||||||
SOD2 | 0.773** | -0.066 | -0.205 | 1 | |||||||
SOD1 | 0.401 | -0.297 | 0.978** | -0.209 | 1 | ||||||
HPGDS | -0.325 | 0.992** | -0.379 | -0.062 | -0.296 | 1 | |||||
GSTA3 | -0.253 | 0.297 | -0.443 | 0.186 | -0.481 | 0.289 | 1 | ||||
GSTA | -0.344 | -0.440 | 0.312 | -0.465 | 0.241 | -0.455 | 0.387 | 1 | |||
GSS | -0.266 | -0.540* | 0.348 | -0.605* | 0.327 | -0.549* | -0.708** | 0.237 | 1 | ||
SOD3 | -0.156 | -0.276 | -0.226 | -0.194 | -0.226 | -0.279 | -0.693** | -0.363 | 0.696** | 1 | |
PRDX6 | 0.428 | 0.054 | -0.631* | 0.871** | -0.644** | 0.055 | 0.341 | -0.491 | -0.599* | 0.005 | 1 |
Table 3 Correlation analysis of genes expression among proteins interacting with GPX3
基因 Gene | GPX3 | GSR | CAT | SOD2 | SOD1 | HPGDS | GSTA3 | GSTA | GSS | SOD3 | PRDX6 |
---|---|---|---|---|---|---|---|---|---|---|---|
GPX3 | 1 | ||||||||||
GSR | -0.330 | 1 | |||||||||
CAT | 0.383 | -0.375 | 1 | ||||||||
SOD2 | 0.773** | -0.066 | -0.205 | 1 | |||||||
SOD1 | 0.401 | -0.297 | 0.978** | -0.209 | 1 | ||||||
HPGDS | -0.325 | 0.992** | -0.379 | -0.062 | -0.296 | 1 | |||||
GSTA3 | -0.253 | 0.297 | -0.443 | 0.186 | -0.481 | 0.289 | 1 | ||||
GSTA | -0.344 | -0.440 | 0.312 | -0.465 | 0.241 | -0.455 | 0.387 | 1 | |||
GSS | -0.266 | -0.540* | 0.348 | -0.605* | 0.327 | -0.549* | -0.708** | 0.237 | 1 | ||
SOD3 | -0.156 | -0.276 | -0.226 | -0.194 | -0.226 | -0.279 | -0.693** | -0.363 | 0.696** | 1 | |
PRDX6 | 0.428 | 0.054 | -0.631* | 0.871** | -0.644** | 0.055 | 0.341 | -0.491 | -0.599* | 0.005 | 1 |
[1] | 张宏亮. 微量元素硒在畜禽养殖中的研究进展[J]. 饲料博览, 2021(9): 19-21. |
Zhang HL. Research progress of trace element selenium in livestock and poultry breeding[J]. Feed Rev, 2021(9): 19-21. | |
[2] |
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation[J]. Inflammopharmacology, 2020, 28(3): 667-695.
doi: 10.1007/s10787-020-00690-x pmid: 32144521 |
[3] | 张丹丹, 娄鹏博, 李振. GPxs家族的研究进展[J]. 农业技术与装备, 2012(15): 66-67. |
Zhang DD, Lou PB, Li Z. Research progress of GPxs family[J]. Agric Technol & Equip, 2012(15): 66-67. | |
[4] |
Kipp AP. Selenium-dependent glutathione peroxidases during tumor development[J]. Adv Cancer Res, 2017, 136: 109-138.
doi: S0065-230X(17)30022-2 pmid: 29054415 |
[5] |
Nirgude S, Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer[J]. Biochem Pharmacol, 2021, 184: 114365.
doi: 10.1016/j.bcp.2020.114365 URL |
[6] |
Avissar N, Ornt DB, Yagil Y, et al. Human kidney proximal tubules are the main source of plasma glutathione peroxidase[J]. Am J Physiol, 1994, 266(2 Pt 1):C367-C375.
doi: 10.1152/ajpcell.1994.266.2.C367 URL |
[7] |
Khan AQ, Rashid K, AlAmodi AA, et al. Reactive oxygen species(ROS)in cancer pathogenesis and therapy: an update on the role of ROS in anticancer action of benzophenanthridine alkaloids[J]. Biomed Pharmacother, 2021, 143: 112142.
doi: 10.1016/j.biopha.2021.112142 URL |
[8] |
Yi ZH, Jiang L, Zhao L, et al. Glutathione peroxidase 3(GPX3)suppresses the growth of melanoma cells through reactive oxygen species(ROS)-dependent stabilization of hypoxia-inducible factor 1-α and 2-α[J]. J Cell Biochem, 2019, 120(11): 19124-19136.
doi: 10.1002/jcb.v120.11 URL |
[9] | 宋敏, 李咏, 王亚楠, 等. GPX3 DNA甲基化在恶性肿瘤发生发展中作用的研究进展[J]. 现代肿瘤医学, 2022, 30(1): 167-171. |
Song M, Li Y, Wang YN, et al. Research progress on the role of GPX3 DNA methylation in the development and progression of malignant tumors[J]. J Mod Oncol, 2022, 30(1): 167-171. | |
[10] |
Jacobson MD. Reactive oxygen species and programmed cell death[J]. Trends Biochem Sci, 1996, 21(3): 83-86.
pmid: 8882579 |
[11] | 国家畜禽遗传资源委员会组. 中国畜禽遗传资源志-家禽志[M]. 北京: 中国农业出版社, 2011. |
China National Commission of Animal Genetic Resources. Animal genetic resources in China[M]. Beijing: Chinese Agriculture Press, 2011. | |
[12] | 郭文场, 丁向清, 张亚兰, 等. 中国藏鸡的特性、饲养管理和保种[J]. 特种经济动植物, 2012, 15(11): 7-11. |
Guo WC, Ding XQ, Zhang YL, et al. Characteristics, feeding management and breeding conservation of Chinese Tibetan chicken[J]. Special Econ Animal Plant, 2012, 15(11): 7-11. | |
[13] |
Pérez-Torres I, Zuniga-Munoz AM, Guarner-Lans V. Beneficial effects of the amino acid glycine[J]. Mini Rev Med Chem, 2017, 17(1): 15-32.
pmid: 27292783 |
[14] | Razak MA, Begum PS, Viswanath B, et al. Multifarious beneficial effect of nonessential amino acid, glycine: a review[J]. Oxid Med Cell Longev, 2017, 2017: 1716701. |
[15] | 付开斌, 陈祥, 周志楠, 等. 黔北麻羊GPx3基因克隆、生物信息学分析及在不同性腺组织中的表达分析[J]. 中国畜牧杂志, 2022, 58(1): 77-84. |
Fu KB, Chen X, Zhou ZN, et al. Cloning, bioinformatics analysis and expression analysis of GPx3 gene in different gonad tissues of Qianbei ma goat[J]. Chin J Animal Sci, 2022, 58(1): 77-84. | |
[16] | 郭笑, 陈冬雪, 韩笑, 等. 人谷胱甘肽过氧化物酶的生物信息学分析[J]. 北华大学学报: 自然科学版, 2016, 17(6): 750-755. |
Guo X, Chen DX, Han X, et al. Bioinformatics analysis of human glutathione peroxidase[J]. J Beihua Univ Nat Sci, 2016, 17(6): 750-755. | |
[17] | 程雪艳, 蒋国萍, 柴雪良, 等. 泥蚶谷胱甘肽过氧化物酶基因的全长克隆与表达分析[J]. 水生生物学报, 2016, 40(6): 1144-1151. |
Cheng XY, Jiang GP, Chai XL, et al. Full-length cDNA cloning and expression analysis of glutathione peroxidase from blood clam Tegillarca granosa[J]. Acta Hydrobiol Sin, 2016, 40(6): 1144-1151. | |
[18] |
Viéitez C, Busby BP, Ochoa D, et al. High-throughput functional characterization of protein phosphorylation sites in yeast[J]. Nat Biotechnol, 2022, 40(3): 382-390.
doi: 10.1038/s41587-021-01051-x |
[19] |
Zhang SL, Duan X. Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC[J]. J Theor Biol, 2018, 437: 239-250.
doi: 10.1016/j.jtbi.2017.10.030 URL |
[20] |
Yang YH, Wu WY, Liu T, et al. A robust method for protein depletion based on gene editing[J]. Methods, 2021, 194: 3-11.
doi: 10.1016/j.ymeth.2021.03.001 pmid: 33705859 |
[21] |
Khoso PA, Yang ZJ, Liu CP, et al. Selenoproteins and heat shock proteins play important roles in immunosuppression in the bursa of Fabricius of chickens with selenium deficiency[J]. Cell Stress Chaperones, 2015, 20(6): 967-978.
doi: 10.1007/s12192-015-0625-9 URL |
[22] |
Patterson MJ, McKenzie CG, Smith DA, et al. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape[J]. Antioxid Redox Signal, 2013, 19(18): 2244-2260.
doi: 10.1089/ars.2013.5199 URL |
[23] |
Yang ZJ, Wang SC, Yin K, et al. miR-1696/GPx3 axis is involved in oxidative stress mediated neutrophil extracellular traps inhibition in chicken neutrophils[J]. J Cell Physiol, 2021, 236(5): 3688-3699.
doi: 10.1002/jcp.30105 pmid: 33044016 |
[24] |
Zhao L, Feng Y, Deng J, et al. Selenium deficiency aggravates aflatoxin B1-induced immunotoxicity in chick spleen by regulating 6 selenoprotein genes and redox/inflammation/apoptotic signaling[J]. J Nutr, 2019, 149(6): 894-901.
doi: 10.1093/jn/nxz019 pmid: 31070734 |
[25] |
Wang W, Jin YF, Zeng NX, et al. SOD2 facilitates the antiviral innate immune response by scavenging reactive oxygen species[J]. Viral Immunol, 2017, 30(8): 582-589.
doi: 10.1089/vim.2017.0043 pmid: 28574756 |
[26] |
Alateyah N, Gupta I, Rusyniak RS, et al. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression[J]. Molecules, 2022, 27(3): 811.
doi: 10.3390/molecules27030811 URL |
[27] | 易力, 刘宏雷. 超氧化物歧化酶2与肿瘤关系的研究进展[J]. 山东医药, 2021, 61(29): 109-112. |
Yi L, Liu HL. Progress of research on the relationship between superoxide dismutase 2 and tumors[J]. Shandong Med J, 2021, 61(29): 109-112. | |
[28] |
Scheurmann J, Treiber N, Weber C, et al. Mice with heterozygous deficiency of manganese superoxide dismutase(SOD2)have a skin immune system with features of “inflamm-aging”[J]. Arch Dermatol Res, 2014, 306(2): 143-155.
doi: 10.1007/s00403-013-1389-7 URL |
[29] | 李曼. SOD2通过LncRNA CLCA3P促进肝细胞ABCC2的表达并提高对药物毒性的耐受[D]. 福州: 福建医科大学, 2020. |
Li M. SOD2 promotes the expression of ABCC2 through lncRNA CLCA3p and improves the detoxification capability of liver cells[D]. Fuzhou: Fujian Medical University, 2020. | |
[30] | Cepas V, González-Menéndez P, Álvarez-Artime A, et al. SOD2 levels alter reproductive physiology in mice[J]. Free Radic Biol Med, 2016, 96: S32. |
[1] | YAN Hui-lin, LU Guang-xin, DENG Ye, GU Song-song, YAN Cheng-liang, MA Kun, ZHAO Yang-an, ZHANG Hai-juan, WANG Ying-cheng, ZHOU Xue-li, DOU Sheng-yun. Effects of Rhizobium Seed Dressing on the Soil Microbial Community of Grass-legume Mixtures in Alpine Regions [J]. Biotechnology Bulletin, 2022, 38(10): 204-215. |
[2] | ZHANG Chun-chen, HU Shuang-yan, RUAN Hai-hua. Expression and Renaturation of Recombinant Human Lysozyme in Escherichia coli [J]. Biotechnology Bulletin, 2020, 36(3): 153-161. |
[3] | HUANG Bao-song, LI Jin-feng, ZHANG Ye, CAO Dan-yu, LU Xiao-ying, GHEN Gang, WANG Zhong-liang. Cloning and Expression Analysis of Prolactin Receptor 1 in Rachycentron canadum at Different Water Salinities [J]. Biotechnology Bulletin, 2020, 36(3): 183-192. |
[4] | JI Wen-bo, WANG Hui, CHAI Zhi-xin, WANG Ji-kun, XIN Jin-wei, ZHONG Jin-cheng. Molecular Cloning and Tissue Expression of Gene HYOU1 [J]. Biotechnology Bulletin, 2019, 35(3): 123-131. |
[5] | ZHANG Ya-nan, LIN Ya-qiu, XU Qing, XU Ya-ou, HE Qing-hua. Correlation Analysis Between IRX3 Gene Expression and Intramuscular Fat Deposition in Tibetan Chicken [J]. Biotechnology Bulletin, 2018, 34(9): 219-223. |
[6] | BAI Wei-wei ,GAO Hai-feng, ZHANG Hang ,YANG An-pei ,LI Guang-kuo. Cloning of Carboxylesterase Gene cDNA Fragments in Sitobion avenae(Fabricius)and Its Expression Analysis Under Imidacloprid Stress [J]. Biotechnology Bulletin, 2018, 34(6): 109-114. |
[7] | HUANG Long, WU Ben-li, HE Ji-xiang, SONG Guang-tong, CHEN Jing, WANG Xiang, WU Song. Cloning and Expression Analysis of FGF21 Gene in Ctenopharyngodon idellus [J]. Biotechnology Bulletin, 2018, 34(1): 153-159. |
[8] | LIN Sen, LIN Ya-qiu, ZHU Jiang-jiang, BAI Xue, JIANG Ming-feng, WANG Yong. Cloning and Tissue Expression Analysis of KLF3 Gene in Yak(Bos grunniens) [J]. Biotechnology Bulletin, 2017, 33(8): 132-138. |
[9] | HUANG Yao-yao, WEN Jin-fen ,DENG Ming-hua, GONG Ming ,CHEN Hao-wei. Cloning and Expression Analysis of Jc5β-StR Gene in Jatropha curcas [J]. Biotechnology Bulletin, 2017, 33(7): 89-95. |
[10] | YANG Yu-jin, GUO Guo, WU Qin-yi, LI Yan, FU Ping, ZHANG Yong. Construction of the Recombinant Expression Plasmid and Expression Pattern of Chitinase Gene MDCII from Musca domestica [J]. Biotechnology Bulletin, 2017, 33(2): 102-108. |
[11] | WEI Guang-shan, ZHANG Jia-wei, LI Ming-cong, GAO Zheng. The Diversity and Distribution Pattern of Bacterial Community in the Water of Yellow River Estuary [J]. Biotechnology Bulletin, 2017, 33(10): 199-208. |
[12] | MO Chao, HU Wen-ge, GUO Yang, WANG Cui-hua, WU Fei. Analysis on Diversity of Archaea in the Soil of Bole River’s Entrance in Ebinur Lake Wetland,Xinjiang [J]. Biotechnology Bulletin, 2016, 32(9): 131-139. |
[13] | FENG Yan-fang, GENG Li-li, HAN Rong, ZHANG Jie. Cloning and Expression Pattern Analysis of NBS-LRR Like-gene in Peanut [J]. Biotechnology Bulletin, 2016, 32(8): 90-95. |
[14] | ZHANG Hong ZHENG Rong. Cloning and Expression Analysis of γ-actin Gene from Leucocortinarius bulbiger [J]. Biotechnology Bulletin, 2016, 32(7): 131-137. |
[15] | WU Wei-jun,LIU Shi-li,LI Qian,WANG Yu-chen,LIAN Qing-ping,HU Ting-jian,JIA Yong-yi,JIANG Wen-ping,LI Xi-lian. Cloning and Expression Analysis of Keratin 18 Gene in Loach(Misgurnus anguillicaudatus) [J]. Biotechnology Bulletin, 2016, 32(5): 114-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||