Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 187-200.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0931
Previous Articles Next Articles
Received:
2022-07-26
Online:
2023-04-26
Published:
2023-05-16
XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota[J]. Biotechnology Bulletin, 2023, 39(4): 187-200.
物种Species | 初级胆汁酸Primary bile acids | 次级胆汁酸Secondary bile acids | ||||
---|---|---|---|---|---|---|
游离型Free | 结合型Conjugated | 游离型Free | 结合型Conjugated | |||
人 | 胆酸、鹅脱氧胆酸 | 甘氨胆酸、 甘氨鹅脱氧胆酸 | 石胆酸、 脱氧胆酸 | 甘氨石胆酸、 甘氨脱氧胆酸 | ||
啮齿动物(鼠) | α-鼠胆酸、β-鼠胆酸、胆酸 | 牛磺α/β-鼠胆酸、牛磺胆酸 | ω-鼠胆酸、 熊脱氧胆酸、石胆酸 | 牛磺ω-鼠胆酸、 牛磺熊脱氧胆酸、牛磺石胆酸 | ||
猪 | 猪胆酸 | 甘氨/牛磺猪胆酸 | 猪脱氧胆酸 | 甘氨/牛磺猪脱氧胆酸 |
Table 1 Composition of bile acids in different species
物种Species | 初级胆汁酸Primary bile acids | 次级胆汁酸Secondary bile acids | ||||
---|---|---|---|---|---|---|
游离型Free | 结合型Conjugated | 游离型Free | 结合型Conjugated | |||
人 | 胆酸、鹅脱氧胆酸 | 甘氨胆酸、 甘氨鹅脱氧胆酸 | 石胆酸、 脱氧胆酸 | 甘氨石胆酸、 甘氨脱氧胆酸 | ||
啮齿动物(鼠) | α-鼠胆酸、β-鼠胆酸、胆酸 | 牛磺α/β-鼠胆酸、牛磺胆酸 | ω-鼠胆酸、 熊脱氧胆酸、石胆酸 | 牛磺ω-鼠胆酸、 牛磺熊脱氧胆酸、牛磺石胆酸 | ||
猪 | 猪胆酸 | 甘氨/牛磺猪胆酸 | 猪脱氧胆酸 | 甘氨/牛磺猪脱氧胆酸 |
受体Receptor | 胆汁酸配体Ligand bile acids | 表达组织 Expressive tissues | 作用途径Functional pathways | ||
---|---|---|---|---|---|
激活剂 Activators | 拮抗剂Antagonists | ||||
FXR | CDCA、CA、T(G)CDCA、T(G)CA、LCA、DCA、HCAs | TαMC、TβMCA UDCA、isoDCA | 肝脏 | 胆汁酸代谢 | FXR—SHP-1—LRH-1—抑制CYP7A1 |
FXR—IR-1—激活胆汁酸转运载体蛋白 | |||||
脂代谢 | FXR—SHP—SREBP-1c—抑制脂肪酸合成酶 | ||||
FXR—PPARα—促进脂肪酸氧化代谢 | |||||
FXR—ApoCII—LPL—促进甘油三酯水解 | |||||
FXR—p-JNK—HNF4α—SRB1—促进HDL-C清除 | |||||
糖代谢 | FXR—SHP—抑制糖异生基因 | ||||
FXR—LPK—抑制糖酵解 | |||||
肠道 | 胆汁酸代谢 | FXR—FGF19/15—结合肝脏FGFR4/βKlotho—激活JNK途径—抑制CYP7A1 | |||
糖代谢 | FXR—FGF19/15—结合肝脏FGFR4/βKlotho—抑制肝脏糖异生基因 | ||||
FXR—抑制GLP-1分泌 | |||||
免疫细胞 | 炎症反应 | FXR—抑制促炎细胞因子的分泌 | |||
TGR5 | T(G)LCA、LCA、T(G)DCA、DCA、CDCA、T(G)CDCA、TCA、CA、UDCA、HCAs | 棕色脂肪组织 | 能量代谢 | TGR5—cAMP—Dio2—增强能量消耗 | |
骨骼肌 | |||||
免疫细胞 | 免疫反应 | TGR5—cAMP—抑制NF-kB信号通路—抑制促炎细胞因子 | |||
肠道 | 糖代谢 | TGR5—cAMP—促进GLP-1分泌 | |||
肠上皮稳态 | 调控肠道干细胞自我更新、增殖和分化 |
Table 2 Functional pathways of bile acid receptors FXR and TGR5
受体Receptor | 胆汁酸配体Ligand bile acids | 表达组织 Expressive tissues | 作用途径Functional pathways | ||
---|---|---|---|---|---|
激活剂 Activators | 拮抗剂Antagonists | ||||
FXR | CDCA、CA、T(G)CDCA、T(G)CA、LCA、DCA、HCAs | TαMC、TβMCA UDCA、isoDCA | 肝脏 | 胆汁酸代谢 | FXR—SHP-1—LRH-1—抑制CYP7A1 |
FXR—IR-1—激活胆汁酸转运载体蛋白 | |||||
脂代谢 | FXR—SHP—SREBP-1c—抑制脂肪酸合成酶 | ||||
FXR—PPARα—促进脂肪酸氧化代谢 | |||||
FXR—ApoCII—LPL—促进甘油三酯水解 | |||||
FXR—p-JNK—HNF4α—SRB1—促进HDL-C清除 | |||||
糖代谢 | FXR—SHP—抑制糖异生基因 | ||||
FXR—LPK—抑制糖酵解 | |||||
肠道 | 胆汁酸代谢 | FXR—FGF19/15—结合肝脏FGFR4/βKlotho—激活JNK途径—抑制CYP7A1 | |||
糖代谢 | FXR—FGF19/15—结合肝脏FGFR4/βKlotho—抑制肝脏糖异生基因 | ||||
FXR—抑制GLP-1分泌 | |||||
免疫细胞 | 炎症反应 | FXR—抑制促炎细胞因子的分泌 | |||
TGR5 | T(G)LCA、LCA、T(G)DCA、DCA、CDCA、T(G)CDCA、TCA、CA、UDCA、HCAs | 棕色脂肪组织 | 能量代谢 | TGR5—cAMP—Dio2—增强能量消耗 | |
骨骼肌 | |||||
免疫细胞 | 免疫反应 | TGR5—cAMP—抑制NF-kB信号通路—抑制促炎细胞因子 | |||
肠道 | 糖代谢 | TGR5—cAMP—促进GLP-1分泌 | |||
肠上皮稳态 | 调控肠道干细胞自我更新、增殖和分化 |
[1] |
Wu JY, Wang K, Wang XM, et al. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
doi: 10.1007/s13238-020-00814-7 |
[2] |
Chiang JYL. Bile acid metabolism and signaling[J]. Compr Physiol, 2013, 3(3): 1191-1212.
doi: 10.1002/cphy.c120023 pmid: 23897684 |
[3] |
Zheng XJ, Chen TL, Jiang RQ, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J]. Cell Metab, 2021, 33(4): 791-803.e7.
doi: 10.1016/j.cmet.2020.11.017 pmid: 33338411 |
[4] |
Jia W, Xie GX, Jia WP. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 111-128.
doi: 10.1038/nrgastro.2017.119 pmid: 29018272 |
[5] |
Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 432-450.
doi: 10.1038/s41575-021-00566-7 pmid: 35165436 |
[6] |
Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications[J]. Pharm Res, 2007, 24(10): 1803-1823.
doi: 10.1007/s11095-007-9289-1 URL |
[7] |
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50.
doi: 10.1016/j.cmet.2016.05.005 pmid: 27320064 |
[8] |
Swann JR, Want EJ, Geier FM, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments[J]. Proc Natl Acad Sci USA, 2011, 108(Suppl 1): 4523-4530.
doi: 10.1073/pnas.1006734107 URL |
[9] |
Jones BV, Begley M, Hill C, et al. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome[J]. Proc Natl Acad Sci USA, 2008, 105(36): 13580-13585.
doi: 10.1073/pnas.0804437105 pmid: 18757757 |
[10] |
Song ZW, Cai YY, Lao XZ, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase(BSH)genes based on worldwide human gut microbiome[J]. Microbiome, 2019, 7(1): 9.
doi: 10.1186/s40168-019-0628-3 |
[11] |
White BA, Lipsky RL, Fricke RJ, et al. Bile acid induction specificity of 7 alpha-dehydroxylase activity in an intestinal Eubacterium species[J]. Steroids, 1980, 35(1): 103-109.
pmid: 7376208 |
[12] |
Funabashi M, Grove TL, Wang M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 2020, 582(7813): 566-570.
doi: 10.1038/s41586-020-2396-4 |
[13] |
Eyssen H, de Pauw G, Stragier J, et al. Cooperative formation of Omega-muricholic acid by intestinal microorganisms[J]. Appl Environ Microbiol, 1983, 45(1): 141-147.
doi: 10.1128/aem.45.1.141-147.1983 URL |
[14] |
Sacquet EC, Raibaud PM, Mejean C, et al. Bacterial formation of Omega-muricholic acid in rats[J]. Appl Environ Microbiol, 1979, 37(6): 1127-1131.
doi: 10.1128/aem.37.6.1127-1131.1979 URL |
[15] |
Paik D, Yao LN, Zhang YC, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912.
doi: 10.1038/s41586-022-04480-z |
[16] |
Li W, Hang SY, Fang Y, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1[J]. Cell Host Microbe, 2021, 29(9): 1366-1377.e9.
doi: 10.1016/j.chom.2021.07.013 URL |
[17] |
Noh DO, Gilliland SE. Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidophilus[J]. J Dairy Sci, 1993, 76(5): 1253-1259.
pmid: 8505417 |
[18] |
Kandell RL, Bernstein C. Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer[J]. Nutr Cancer, 1991, 16(3/4): 227-238.
doi: 10.1080/01635589109514161 URL |
[19] |
Bernstein H, Payne CM, Bernstein C, et al. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate[J]. Toxicol Lett, 1999, 108(1): 37-46.
doi: 10.1016/s0378-4274(99)00113-7 pmid: 10472808 |
[20] |
Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid[J]. J Bacteriol, 2010, 192(19): 4983-4990.
doi: 10.1128/JB.00610-10 URL |
[21] |
Weingarden AR, Chen C, Bobr A, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(4): G310-G319.
doi: 10.1152/ajpgi.00282.2013 URL |
[22] |
Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3920-3925.
doi: 10.1073/pnas.0509592103 pmid: 16473946 |
[23] |
D'Aldebert E, Biyeyeme Bi Mve MJ, Mergey M, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium[J]. Gastroenterology, 2009, 136(4): 1435-1443.
doi: 10.1053/j.gastro.2008.12.040 pmid: 19245866 |
[24] |
Nie YF, Hu J, Yan XH. Cross-talk between bile acids and intestinal microbiota in host metabolism and health[J]. J Zhejiang Univ Sci B, 2015, 16(6): 436-446.
doi: 10.1631/jzus.B1400327 URL |
[25] |
Ticho AL, Malhotra P, Dudeja PK, et al. Bile acid receptors and gastrointestinal functions[J]. Liver Res, 2019, 3(1): 31-39.
doi: 10.1016/j.livres.2019.01.001 pmid: 32368358 |
[26] |
Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of whole-body energy metabolism[J]. Trends Endocrinol Metab, 2011, 22(11): 458-466.
doi: 10.1016/j.tem.2011.07.002 URL |
[27] |
Xu GR, Pan LX, Erickson SK, et al. Removal of the bile acid pool upregulates cholesterol 7alpha-hydroxylase by deactivating FXR in rabbits[J]. J Lipid Res, 2002, 43(1): 45-50.
pmid: 11792721 |
[28] |
Lu TT, Makishima M, Repa JJ, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors[J]. Mol Cell, 2000, 6(3): 507-515.
doi: 10.1016/s1097-2765(00)00050-2 pmid: 11030331 |
[29] |
Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis[J]. Mol Cell, 2000, 6(3): 517-526.
doi: 10.1016/s1097-2765(00)00051-4 pmid: 11030332 |
[30] |
Kerr TA, Saeki S, Schneider M, et al. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis[J]. Dev Cell, 2002, 2(6): 713-720.
pmid: 12062084 |
[31] |
Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4): 217-225.
doi: 10.1016/j.cmet.2005.09.001 pmid: 16213224 |
[32] |
Chiang JYL. Bile acid regulation of gene expression: roles of nuclear hormone receptors[J]. Endocr Rev, 2002, 23(4): 443-463.
doi: 10.1210/er.2000-0035 pmid: 12202460 |
[33] |
Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model[J]. Nat Med, 2004, 10(12): 1352-1358.
doi: 10.1038/nm1138 pmid: 15558057 |
[34] |
Debose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond[J]. Trends Biochem Sci, 2018, 43(5): 358-368.
doi: 10.1016/j.tibs.2018.01.005 URL |
[35] |
Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[J]. J Clin Invest, 2004, 113(10): 1408-1418.
doi: 10.1172/JCI21025 pmid: 15146238 |
[36] |
Duran-Sandoval D, Cariou B, Percevault F, et al. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition[J]. J Biol Chem, 2005, 280(33): 29971-29979.
doi: 10.1074/jbc.M501931200 pmid: 15899888 |
[37] | Li TG, Chiang JYL. Regulation of bile acid and cholesterol metabolism by PPARs[J]. PPAR Res, 2009, 2009: 501739. |
[38] |
Lambert G, Amar MJA, Guo G, et al. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis[J]. J Biol Chem, 2003, 278(4): 2563-2570.
doi: 10.1074/jbc.M209525200 pmid: 12421815 |
[39] |
Zhang YQ, Yin LY, Anderson J, et al. Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia[J]. J Biol Chem, 2010, 285(5): 3035-3043.
doi: 10.1074/jbc.M109.083899 pmid: 19996107 |
[40] |
Kast HR, Nguyen CM, Sinal CJ, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids[J]. Mol Endocrinol, 2001, 15(10): 1720-1728.
pmid: 11579204 |
[41] | Jiang XC, Jin WJ, Hussain MM. The impact of phospholipid transfer protein(PLTP)on lipoprotein metabolism[J]. Nutr Metab(Lond), 2012, 9(1): 75. |
[42] |
Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis[J]. J Clin Invest, 2006, 116(4): 1102-1109.
doi: 10.1172/JCI25604 pmid: 16557297 |
[43] |
Shapiro H, Kolodziejczyk AA, Halstuch D, et al. Bile acids in glucose metabolism in health and disease[J]. J Exp Med, 2018, 215(2): 383-396.
doi: 10.1084/jem.20171965 URL |
[44] |
Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1[J]. J Biol Chem, 2004, 279(22): 23158-23165.
doi: 10.1074/jbc.M314322200 pmid: 15047713 |
[45] |
Zhang YQ, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice[J]. Proc Natl Acad Sci USA, 2006, 103(4): 1006-1011.
doi: 10.1073/pnas.0506982103 pmid: 16410358 |
[46] |
Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes[J]. Endocrinology, 2004, 145(6): 2594-2603.
doi: 10.1210/en.2003-1671 pmid: 14976145 |
[47] |
Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis[J]. Science, 2011, 331(6024): 1621-1624.
doi: 10.1126/science.1198363 pmid: 21436455 |
[48] |
Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells[J]. Nat Commun, 2015, 6: 7629.
doi: 10.1038/ncomms8629 |
[49] |
Biagioli M, Carino A. Signaling from intestine to the host: how bile acids regulate intestinal and liver immunity[J]. Handb Exp Pharmacol, 2019, 256: 95-108.
doi: 10.1007/164_2019_225 pmid: 31119464 |
[50] |
Vavassori P, Mencarelli A, Renga B, et al. The bile acid receptor FXR is a modulator of intestinal innate immunity[J]. J Immunol, 2009, 183(10): 6251-6261.
doi: 10.4049/jimmunol.0803978 pmid: 19864602 |
[51] |
Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60(4): 463-472.
doi: 10.1136/gut.2010.212159 pmid: 21242261 |
[52] |
Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids(M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719.
doi: 10.1016/S0006-291X(02)02550-0 URL |
[53] |
Xia XF, Francis H, Glaser S, et al. Bile acid interactions with cholangiocytes[J]. World J Gastroenterol, 2006, 12(22): 3553-3563.
doi: 10.3748/wjg.v12.i22.3553 URL |
[54] |
Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J]. Nature, 2006, 439(7075): 484-489.
doi: 10.1038/nature04330 |
[55] |
Li MC, Wang SL, Li YT, et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice[J]. Nat Commun, 2022, 13(1): 2060.
doi: 10.1038/s41467-022-29589-7 pmid: 35440584 |
[56] |
Hodge RJ, Nunez DJ. Therapeutic potential of takeda-G-protein-receptor-5(TGR5)agonists. hope or hype?[J]. Diabetes Obes Metab, 2016, 18(5): 439-443.
doi: 10.1111/dom.12636 pmid: 26818602 |
[57] |
Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3): 167-177.
doi: 10.1016/j.cmet.2009.08.001 pmid: 19723493 |
[58] |
Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, et al. TUDCA: an agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells[J]. J Cell Physiol, 2017, 232(8): 2231-2245.
doi: 10.1002/jcp.25742 pmid: 27987324 |
[59] |
Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids[J]. J Biol Chem, 2003, 278(11): 9435-9440.
doi: 10.1074/jbc.M209706200 pmid: 12524422 |
[60] |
Keitel V, Donner M, Winandy S, et al. Expression and function of the bile acid receptor TGR5 in Kupffer cells[J]. Biochem Biophys Res Commun, 2008, 372(1): 78-84.
doi: 10.1016/j.bbrc.2008.04.171 URL |
[61] |
Pols TWH, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J]. Cell Metab, 2011, 14(6): 747-757.
doi: 10.1016/j.cmet.2011.11.006 pmid: 22152303 |
[62] |
Cook J, Hagemann T. Tumour-associated macrophages and cancer[J]. Curr Opin Pharmacol, 2013, 13(4): 595-601.
doi: 10.1016/j.coph.2013.05.017 pmid: 23773801 |
[63] |
Priyanka S, Medhamurthy R. Characterization of cAMP/PKA/CREB signaling cascade in the bonnet monkey corpus luteum: expressions of inhibin-alpha and StAR during different functional status[J]. Mol Hum Reprod, 2007, 13(6): 381-390.
pmid: 17430983 |
[64] |
Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3): 956-968.e8.
doi: S0016-5085(20)34739-9 pmid: 32485177 |
[65] |
Borgstroem B. Influence of bile salt, ph, and time on the action of pancreatic lipase; physiological implications[J]. J Lipid Res, 1964, 5: 522-531.
pmid: 14221095 |
[66] |
Gottlieb A, Bechmann L, Canbay A. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids[J]. Ann Hepatol, 2018, 17(3): 340-341.
doi: 10.5604/01.3001.0011.7378 pmid: 29735794 |
[67] |
Schreuder TCMA, Marsman HA, Lenicek M, et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): G440-G445.
doi: 10.1152/ajpgi.00322.2009 URL |
[68] |
Beuers U, Trauner M, Jansen P, et al. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond[J]. J Hepatol, 2015, 62(1 Suppl): S25-S37.
doi: 10.1016/j.jhep.2015.02.023 URL |
[69] |
Solá S, Amaral JD, Aranha MM, et al. Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors[J]. Curr Med Chem, 2006, 13(25): 3039-3051.
pmid: 17073645 |
[70] |
Ratziu V, de Ledinghen V, Oberti F, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis[J]. J Hepatol, 2011, 54(5): 1011-1019.
doi: 10.1016/j.jhep.2010.08.030 pmid: 21145828 |
[71] |
Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease[J]. Hepatology, 2011, 53(3): 1023-1034.
doi: 10.1002/hep.24148 pmid: 21319202 |
[72] |
Degirolamo C, Modica S, Vacca M, et al. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation[J]. Hepatology, 2015, 61(1): 161-170.
doi: 10.1002/hep.27274 pmid: 24954587 |
[73] |
Mertens KL, Kalsbeek A, Soeters MR, et al. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system[J]. Front Neurosci, 2017, 11: 617.
doi: 10.3389/fnins.2017.00617 URL |
[74] |
McMillin M, DeMorrow S. Effects of bile acids on neurological function and disease[J]. FASEB J, 2016, 30(11): 3658-3668.
pmid: 27468758 |
[75] |
McMillin M, Frampton G, Tobin R, et al. TGR5 signaling reduces neuroinflammation during hepatic encephalopathy[J]. J Neurochem, 2015, 135(3): 565-576.
doi: 10.1111/jnc.13243 pmid: 26179031 |
[76] |
Huang F, Wang TT, Lan YY, et al. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior[J]. Front Behav Neurosci, 2015, 9: 70.
doi: 10.3389/fnbeh.2015.00070 pmid: 25870546 |
[77] |
Xie MH, Holcomb I, Deuel B, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4[J]. Cytokine, 1999, 11(10): 729-735.
doi: 10.1006/cyto.1999.0485 pmid: 10525310 |
[78] |
Marcelin G, Jo YH, Li XS, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism[J]. Mol Metab, 2013, 3(1): 19-28.
doi: 10.1016/j.molmet.2013.10.002 URL |
[79] |
Morton GJ, Matsen ME, Bracy DP, et al. FGF19 action in the brain induces insulin-independent glucose lowering[J]. J Clin Invest, 2013, 123(11): 4799-4808.
doi: 10.1172/JCI70710 URL |
[80] |
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480): 446-450.
doi: 10.1038/nature12721 |
[81] |
Arpaia N, Campbell C, Fan XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504(7480): 451-455.
doi: 10.1038/nature12726 |
[82] |
Sefik E, Geva-Zatorsky N, Oh S, et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells[J]. Science, 2015, 349(6251): 993-997.
doi: 10.1126/science.aaa9420 pmid: 26272906 |
[83] |
Song XY, Sun XM, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415.
doi: 10.1038/s41586-019-1865-0 |
[84] |
Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571): 1313-1316.
doi: 10.1126/science.1070477 pmid: 12016314 |
[85] |
Adachi R, Honma Y, Masuno H, et al. Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative[J]. J Lipid Res, 2005, 46(1): 46-57.
doi: 10.1194/jlr.M400294-JLR200 pmid: 15489543 |
[86] |
Ishizawa M, Matsunawa M, Adachi R, et al. Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia[J]. J Lipid Res, 2008, 49(4): 763-772.
doi: 10.1194/jlr.M700293-JLR200 pmid: 18180267 |
[87] |
Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity[J]. Proc Natl Acad Sci USA, 2001, 98(6): 3369-3374.
doi: 10.1073/pnas.051551698 pmid: 11248085 |
[88] |
Shah YM, Ma XC, Morimura K, et al. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(4): G1114-G1122.
doi: 10.1152/ajpgi.00528.2006 URL |
[89] |
Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581(7809): 475-479.
doi: 10.1038/s41586-020-2193-0 |
[90] |
Hang SY, Paik D, Yao LN, et al. Bile acid metabolites control TH17 and Treg cell differentiation[J]. Nature, 2019, 576(7785): 143-148.
doi: 10.1038/s41586-019-1785-z |
[91] |
Floreani A, Mangini C. Primary biliary cholangitis: old and novel therapy[J]. Eur J Intern Med, 2018, 47: 1-5.
doi: S0953-6205(17)30264-9 pmid: 28669591 |
[92] |
Trauner M, Nevens F, Shiffman ML, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study[J]. Lancet Gastroenterol Hepatol, 2019, 4(6): 445-453.
doi: 10.1016/S2468-1253(19)30094-9 URL |
[93] |
Pearson T, Caporaso JG, Yellowhair M, et al. Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development[J]. Cancer Med, 2019, 8(2): 617-628.
doi: 10.1002/cam4.2019.8.issue-2 URL |
[94] |
Ge XK, Wang AA, Ying ZX, et al. Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers[J]. Poult Sci, 2019, 98(2): 887-895.
doi: 10.3382/ps/pey434 URL |
[95] | Udomprasert P, Rukkwamsuk T. Effect of an exogenous emulsifier on growth performance in weanling pigs[J]. Kasetsart Journal, 2006, 40(3): p.652-656. |
[96] |
Jain AK, Stoll B, Burrin DG, et al. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(2): G218-G224.
doi: 10.1152/ajpgi.00280.2011 URL |
[97] |
Wu XY, Yin SN, Cheng CS, et al. Inclusion of soluble fiber during gestation regulates gut microbiota, improves bile acid homeostasis, and enhances the reproductive performance of sows[J]. Front Vet Sci, 2021, 8: 756910.
doi: 10.3389/fvets.2021.756910 URL |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[3] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[4] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[5] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[6] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[7] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[8] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[9] | SHEN Yue, TAO Bao-jie, HUA Xia, LV Bing, LIU Li-jun, CHEN Yun. Research Progress in the Interactions of Strigolactone with Hormones on Regulating Root Growth [J]. Biotechnology Bulletin, 2022, 38(8): 24-31. |
[10] | JIANG Xian-zhe, ZHANG Bo-yan, LUO Hai-ling, ZHANG Xin-meng, WANG Bing. Role of Gut-Liver Axis in Animal Nutritional Metabolism and Immunity [J]. Biotechnology Bulletin, 2022, 38(7): 128-135. |
[11] | HE Ya-lun, ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong. Effects of High-dose Tannic Acid on the Intestinal Barrier Function and Gut Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(4): 278-287. |
[12] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[13] | ZHANG Jun-feng, LI Meng-ke, WU Zhi-hao, CUI Xiao-long, XIAO wei, ZHANG Shi-ying. Effects of Bacteriophages DCEAV-31 and DCEIV-9 on the Algicidal Characteristics of Algicidal Bacterium Against Microcystis [J]. Biotechnology Bulletin, 2022, 38(11): 250-257. |
[14] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
[15] | CHEN Chen, HUANG Zhi-yang, YU Hai-yan, YUAN Hai-bin, TIAN Huai-xiang. Research Technology and Progress in Transcriptional Regulation in Prokaryotes [J]. Biotechnology Bulletin, 2022, 38(10): 54-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||