Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 152-159.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1301
Previous Articles Next Articles
LIANG Cheng-gang1,2(), WANG Yan1, LI Tian3, OHSUGI Ryu2, AOKI Naohiro2()
Received:
2022-10-23
Online:
2023-05-26
Published:
2023-06-08
Contact:
LIANG Cheng-gang, AOKI Naohiro
E-mail:201503001@gznu.edu.cn;aaokin@mail.ecc.u-tokyo.ac.jp
LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization[J]. Biotechnology Bulletin, 2023, 39(5): 152-159.
基因Gene | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
SP1 | GTTCGAACCGCACGTCTAGT | GGGGACTCATATACATCCACCC |
UBI | GGAGCTGCTGCTGTTCTTGG | CACAATGAAACGGGACACGA |
Table 1 The primers of genes for RT-qPCR analysis
基因Gene | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
SP1 | GTTCGAACCGCACGTCTAGT | GGGGACTCATATACATCCACCC |
UBI | GGAGCTGCTGCTGTTCTTGG | CACAATGAAACGGGACACGA |
Fig. 1 Plant phenotype at 10 d after nitrogen treatment (A), and the relative growth rate from 10 d to 20 d after nitrogen treatment(B) HN: High nitrogen treatment; MN: middle nitrogen treatment; LN: low nitrogen treatment. * and ** indicate significant(P<0.05)or extremely significant(P<0.01)difference. The same below. Scale bar=10 cm
材料 Material | 氮处理 Nitrogen treatment | 根重 Root weight/mg | 叶鞘重 Leaf sheath weight/mg | 叶重 Leaf weight/mg | 植株干重 Plant dry weight/mg |
---|---|---|---|---|---|
WT | HN-10 d | 33.94±0.54 | 38.66±1.44 | 43.56±0.76 | 116.16±2.12 |
sp1 | HN-10 d | 35.66±1.17 | 43.96±0.83* | 44.90±0.82 | 124.52±1.08** |
WT | MN-10 d | 38.18±1.37 | 41.78±1.05 | 40.98±1.56 | 120.94±2.54 |
sp1 | MN-10 d | 38.14±0.78 | 45.52±0.91* | 40.32±1.55 | 123.98±2.05 |
WT | LN-10 d | 37.76±1.09 | 37.64±1.16 | 32.06±1.33 | 107.46±1.23 |
sp1 | LN-10 d | 42.84±1.22 | 39.74±0.61 | 34.58±0.54* | 117.16±1.33** |
WT | HN-24 d | 106.84±3.70 | 210.38±8.05 | 218.10±14.36 | 535.32±12.39 |
sp1 | HN-24 d | 145.24±11.94* | 294.80±27.57* | 241.12±19.97 | 681.16±31.42** |
WT | MN-24 d | 152.26±11.37 | 213.24±13.75 | 164.36±3.92 | 529.86±13.56 |
sp1 | MN-24 d | 194.00±19.20* | 297.76±33.23* | 212.24±18.34** | 737.86±37.61** |
WT | LN-24 d | 126.44±5.50 | 170.76±5.10 | 104.60±1.64 | 401.80±7.08 |
sp1 | LN-24 d | 144.42±2.64* | 193.42±4.76* | 99.26±7.14 | 437.10±5.15** |
Table 2 Agronomic traits of rice under different nitrogen conditions
材料 Material | 氮处理 Nitrogen treatment | 根重 Root weight/mg | 叶鞘重 Leaf sheath weight/mg | 叶重 Leaf weight/mg | 植株干重 Plant dry weight/mg |
---|---|---|---|---|---|
WT | HN-10 d | 33.94±0.54 | 38.66±1.44 | 43.56±0.76 | 116.16±2.12 |
sp1 | HN-10 d | 35.66±1.17 | 43.96±0.83* | 44.90±0.82 | 124.52±1.08** |
WT | MN-10 d | 38.18±1.37 | 41.78±1.05 | 40.98±1.56 | 120.94±2.54 |
sp1 | MN-10 d | 38.14±0.78 | 45.52±0.91* | 40.32±1.55 | 123.98±2.05 |
WT | LN-10 d | 37.76±1.09 | 37.64±1.16 | 32.06±1.33 | 107.46±1.23 |
sp1 | LN-10 d | 42.84±1.22 | 39.74±0.61 | 34.58±0.54* | 117.16±1.33** |
WT | HN-24 d | 106.84±3.70 | 210.38±8.05 | 218.10±14.36 | 535.32±12.39 |
sp1 | HN-24 d | 145.24±11.94* | 294.80±27.57* | 241.12±19.97 | 681.16±31.42** |
WT | MN-24 d | 152.26±11.37 | 213.24±13.75 | 164.36±3.92 | 529.86±13.56 |
sp1 | MN-24 d | 194.00±19.20* | 297.76±33.23* | 212.24±18.34** | 737.86±37.61** |
WT | LN-24 d | 126.44±5.50 | 170.76±5.10 | 104.60±1.64 | 401.80±7.08 |
sp1 | LN-24 d | 144.42±2.64* | 193.42±4.76* | 99.26±7.14 | 437.10±5.15** |
处理/材料 Treatment/ Material | 氮含量Nitrogen content/% | 碳含量Carbon content/% | 碳/氮比Carbon/Nitrogen ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
根 Root | 叶鞘 Leaf sheath | 叶片 Leaf blade | 根 Root | 叶鞘 Leaf sheath | 叶片 Leaf blade | 根 Root | 叶鞘 Leaf sheath | 叶片 Leaf blade | |
HN-WT | 1.68±0.05 | 2.07±0.01 | 3.79±0.04 | 45.26±1.00 | 40.99±0.20 | 43.54±0.39 | 27.10±1.24 | 19.77±0.20 | 11.48±0.10 |
HN-sp1 | 1.68±0.02 | 1.90±0.04* | 3.71±0.03 | 43.80±0.12 | 40.82±0.10 | 43.15±0.03 | 26.09±0.35 | 21.54±0.42* | 11.63±0.10 |
MN-WT | 1.12±0.04 | 1.32±0.04 | 3.17±0.06 | 45.00±0.29 | 41.33±0.06 | 43.38±0.07 | 40.41±1.37 | 31.48±0.20 | 13.70±0.10 |
MN-sp1 | 1.07±0.02 | 1.28±0.02 | 2.97±0.07 | 43.59±0.35 | 40.86±0.10* | 42.89±0.12 | 40.65±0.87 | 31.87±0.42 | 14.48±0.10 |
LN-WT | 0.86±0.03 | 1.08±0.00 | 2.67±0.06 | 47.31±0.38 | 43.09±0.32 | 42.95±0.16 | 55.63±2.47 | 39.94±0.44 | 16.14±0.38 |
LN-sp1 | 0.79±0.04 | 0.89±0.01** | 2.46±0.06 | 48.32±0.46 | 44.20±0.21 | 43.51±0.33 | 61.76±2.88 | 49.52±0.63** | 17.75±0.36 |
Table 3 Carbon and nitrogen content in rice plant organs at 24 d under nitrogen treatment
处理/材料 Treatment/ Material | 氮含量Nitrogen content/% | 碳含量Carbon content/% | 碳/氮比Carbon/Nitrogen ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
根 Root | 叶鞘 Leaf sheath | 叶片 Leaf blade | 根 Root | 叶鞘 Leaf sheath | 叶片 Leaf blade | 根 Root | 叶鞘 Leaf sheath | 叶片 Leaf blade | |
HN-WT | 1.68±0.05 | 2.07±0.01 | 3.79±0.04 | 45.26±1.00 | 40.99±0.20 | 43.54±0.39 | 27.10±1.24 | 19.77±0.20 | 11.48±0.10 |
HN-sp1 | 1.68±0.02 | 1.90±0.04* | 3.71±0.03 | 43.80±0.12 | 40.82±0.10 | 43.15±0.03 | 26.09±0.35 | 21.54±0.42* | 11.63±0.10 |
MN-WT | 1.12±0.04 | 1.32±0.04 | 3.17±0.06 | 45.00±0.29 | 41.33±0.06 | 43.38±0.07 | 40.41±1.37 | 31.48±0.20 | 13.70±0.10 |
MN-sp1 | 1.07±0.02 | 1.28±0.02 | 2.97±0.07 | 43.59±0.35 | 40.86±0.10* | 42.89±0.12 | 40.65±0.87 | 31.87±0.42 | 14.48±0.10 |
LN-WT | 0.86±0.03 | 1.08±0.00 | 2.67±0.06 | 47.31±0.38 | 43.09±0.32 | 42.95±0.16 | 55.63±2.47 | 39.94±0.44 | 16.14±0.38 |
LN-sp1 | 0.79±0.04 | 0.89±0.01** | 2.46±0.06 | 48.32±0.46 | 44.20±0.21 | 43.51±0.33 | 61.76±2.88 | 49.52±0.63** | 17.75±0.36 |
Fig. 2 Phenotype of rice sp1 and RT-qRCR analysis of SP1 gene A: Plant of WT and sp1. Red arrows point to high-node tillerings of sp1. Blue arrow points to panicle of sp1. B: Cereals of WT and sp1. C: RT-qRCR analysis of SP1 gene. LB: Leaf blade. TLS: Top of leaf sheath. BLS: Base of leaf sheath
Fig. 4 Contents of starch(A), sucrose(B), glucose,(C)and fructose(D)in the upper tissues of sp1 collected at 70 d and 80 d after transplanting C2: The internode culm between 2nd and 3rd below panicle. C3: The internode culm between 3rd and 4th below panicle. LS2: The second top leaf sheath. LS3: The third top leaf sheath
[1] |
代明笠, 邱先进, 陈凯, 等. 水稻不同源库相关基因聚合的产量效应分析[J]. 核农学报, 2020, 34(6): 1129-1137.
doi: 10.11869/j.issn.100-8551.2020.06.1129 |
Dai ML, Qiu XJ, Chen K, et al. Analysis of pyramiding effect of sink-source related genes on grain yield in rice[J]. J Nucl Agric Sci, 2020, 34(6): 1129-1137.
doi: 10.11869/j.issn.100-8551.2020.06.1129 |
|
[2] | 赵明, 李少昆. 作物产量研究三理论及其应用与发展[J]. 北京农业大学学报, 1995(S1): 70-75. |
Zhao M, Li SK. The application and development of three theroies in crop yield study(review)[J]. Acta Agric Univ Pekin, 1995(S1): 70-75. | |
[3] | 丛斌, 贾红武, 李严, 等. 水稻幼穗形态发生与顶端分生组织的研究[J]. 西北植物学报, 1999, 19(3): 415-421, 573. |
Cong B, Jia HW, Li Y, et al. Studies on morphogenesis and shoot apical meristem(SAM)of rudimentary panicle in rice[J]. Acta Bot Boreali Occidentalia Sin, 1999, 19(3): 415-421, 573. | |
[4] |
Caselli F, Zanarello F, Kater MM, et al. Crop reproductive meristems in the genomic era: a brief overview[J]. Biochem Soc Trans, 2020, 48(3): 853-865.
doi: 10.1042/BST20190441 URL |
[5] |
Komatsu K, Maekawa M, Ujiie S, et al. LAX and SPA: major regulators of shoot branching in rice[J]. Proc Natl Acad Sci USA, 2003, 100(20): 11765-11770.
doi: 10.1073/pnas.1932414100 pmid: 13130077 |
[6] |
Tabuchi H, Zhang Y, Hattori S, et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J]. Plant Cell, 2011, 23(9): 3276-3287.
doi: 10.1105/tpc.111.088765 URL |
[7] | 刘华清, 吴为人, 段远霖, 等. 水稻小穗特征基因FZP的图位克隆[J]. 遗传学报, 2003, 30(9): 811-816. |
Liu HQ, Wu WR, Duan YL, et al. Towards the positional cloning of a spikelet identity gene Frizzle Panicle(FZP)in rice(Oryza sativa L.)[J]. Acta Genet Sin, 2003, 30(9): 811-816. | |
[8] |
Wang YD, Wei SS, He YB, et al. Synergistic roles of LAX1 and FZP in the development of rice sterile Lemma[J]. Crop J, 2020, 8(1): 16-25.
doi: 10.1016/j.cj.2019.06.006 URL |
[9] |
Qi WW, Sun F, Wang QJ, et al. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene[J]. Plant Physiol, 2011, 157(1): 216-228.
doi: 10.1104/pp.111.179945 URL |
[10] | Wu K, Wang SS, Song WZ, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367(6478): eaaz2046. |
[11] |
Ikeda K, Ito M, Nagasawa N, et al. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-Box protein, regulates meristem fate[J]. Plant J, 2007, 51(6): 1030-1040.
doi: 10.1111/j.1365-313X.2007.03200.x pmid: 17666027 |
[12] |
Ikeda-Kawakatsu K, Maekawa M, Izawa T, et al. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J]. Plant J, 2012, 69(1): 168-180.
doi: 10.1111/tpj.2011.69.issue-1 URL |
[13] |
Zhang DP, Zhang MY, Wang YZ, et al. RGB1 regulates rice panicle architecture and grain filling through monitoring cytokinin level in inflorescence meristem and grain abscisic acid level during filling stage[J]. Rice Sci, 2021, 28(4): 317-321.
doi: 10.1016/j.rsci.2021.05.002 URL |
[14] |
Zhang ZY, Sun XM, Ma XQ, et al. GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice[J]. Crop J, 2021, 9(1): 57-67.
doi: 10.1016/j.cj.2020.04.011 URL |
[15] |
Zhu ZC, Luo S, Lei B, et al. Locus TUTOU2 determines the panicle apical abortion phenotype of rice(Oryza sativa L.) in tutou2 mutant[J]. J Integr Agric, 2022, 21(3): 621-630.
doi: 10.1016/S2095-3119(20)63447-5 URL |
[16] |
Ookawa T, Hobo T, Yano M, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J]. Nat Commun, 2010, 1: 132.
doi: 10.1038/ncomms1132 |
[17] |
Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[18] |
Tu B, Tao Z, Wang SG, et al. Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance[J]. J Integr Plant Biol, 2022, 64(1): 23-38.
doi: 10.1111/jipb.v64.1 URL |
[19] |
Huang XZ, Qian Q, Liu ZB, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009, 41(4): 494-497.
doi: 10.1038/ng.352 pmid: 19305410 |
[20] |
Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 pmid: 20495565 |
[21] |
Wang J, Yu H, Xiong GS, et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice[J]. Plant Cell, 2017, 29(4): 697-707.
doi: 10.1105/tpc.16.00879 URL |
[22] |
Wang SS, Wu K, Qian Q, et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Res, 2017, 27(9): 1142-1156.
doi: 10.1038/cr.2017.98 pmid: 28776570 |
[23] |
Zhang L, Zou YT, Bian Z, et al. Fine mapping and candidate gene prediction of the quantitative trait locus qPL8 for panicle length in rice[J]. Phyton, 2021, 90(3): 789-802.
doi: 10.32604/phyton.2021.014880 URL |
[24] |
Zhang L, Wang JJ, Wang JM, et al. Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice[J]. Theor Appl Genet, 2015, 128(6): 1151-1161.
doi: 10.1007/s00122-015-2496-y pmid: 25821195 |
[25] |
Li SB, Qian Q, Fu ZM, et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J]. Plant J, 2009, 58(4): 592-605.
doi: 10.1111/tpj.2009.58.issue-4 URL |
[26] | 何宗顺, 李雪梅, 吴昌银. 水稻穗大小决定基因PS1的遗传分析及克隆[J]. 分子植物育种, 2012, 10(4): 380-387. |
He ZS, Li XM, Wu CY. Genetic analysis and mapping of PS1 gene which may determine panicle size in rice[J]. Mol Plant Breed, 2012, 10(4): 380-387. | |
[27] |
Jeong J, Suh S, Guan CH, et al. A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family[J]. Plant Physiol, 2004, 134(3): 969-978.
pmid: 15001700 |
[28] |
Léran S, Varala K, Boyer JC, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends Plant Sci, 2014, 19(1): 5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139 |
[29] |
Nour-Eldin HH, Andersen TG, Burow M, et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds[J]. Nature, 2012, 488(7412): 531-534.
doi: 10.1038/nature11285 |
[30] | Liang CG, Hirose T, Okamura M, et al. Phenotypic analyses of rice lse2 and lse3 mutants that exhibit hyperaccumulation of starch in the leaf blades[J]. Rice(N Y), 2014, 7(1): 32. |
[31] |
Zhang HB, Liang CG, Aoki N, et al. Introduction of a fungal NADP(H)-dependent glutamate dehydrogenase(gdhA)improves growth, grain weight and salt resistance by enhancing the nitrogen uptake efficiency in forage rice[J]. Plant Prod Sci, 2016, 19(2): 267-278.
doi: 10.1080/1343943X.2015.1133237 URL |
[32] |
张海淼, 李洋, 刘海峰, 等. 水稻重要农艺性状调控基因及其育种利用研究进展[J]. 生物技术通报, 2020, 36(12): 155-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0537 |
Zhang HM, Li Y, Liu HF, et al. Research progress on regulatory genes of important agronomic traits and breeding utilization in rice[J]. Biotechnol Bull, 2020, 36(12): 155-169. | |
[33] |
Perez CM, Palmiano EP, Baun LC, et al. Starch metabolism in the leaf sheaths and culm of rice[J]. Plant Physiol, 1971, 47(3): 404-408.
doi: 10.1104/pp.47.3.404 pmid: 16657631 |
[34] |
Matsushita K, Ishii T, Ideta O, et al. Yield and lodging resistance of ‘Tachiayaka’, a novel rice cultivar with short panicles for whole-crop silage[J]. Plant Prod Sci, 2014, 17(2): 202-206.
doi: 10.1626/pps.17.202 URL |
[35] |
Hashida Y, Kadoya S, Okamura M, et al. Characterization of sugar metabolism in the stem of Tachisuzuka, a whole-crop silage rice cultivar with high sugar content in the stem[J]. Plant Prod Sci, 2018, 21(3): 233-243.
doi: 10.1080/1343943X.2018.1461016 URL |
[36] |
Hirose T, Kadoya S, Hashida Y, et al. Mutation of the SP1 gene is responsible for the small-panicle trait in the rice cultivar Tachisuzuka, but not necessarily for high sugar content in the stem[J]. Plant Prod Sci, 2017, 20(1): 90-94.
doi: 10.1080/1343943X.2016.1260484 URL |
[1] | DAI Lu-mei, LI Tao, WU Hua-lian, WU Hou-bo, XIANG Wen-zhou. Total Carbohydrates and β-glucans Accumulation of Rhodosorus sp. SCSIO-45730 [J]. Biotechnology Bulletin, 2021, 37(1): 205-214. |
[2] | ZHOU Huai-ye, ZHOU Bi-yao, Su Tao. The Research Progress of β-Fructosidase Inhibitors [J]. Biotechnology Bulletin, 2020, 36(12): 137-145. |
[3] | ZHANG Yang, LIU Ai-zhong. The Correlation Between Soluble Carbohydrate Metabolism and Lipid Accumulation in Castor Seeds [J]. Biotechnology Bulletin, 2016, 32(6): 120-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||