Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 23-31.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1229
Previous Articles Next Articles
ZHANG He-chen1(), YUAN Xin1, GAO Jie1, WANG Xiao-chen1,2, WANG Hui-juan1, LI Yan-min1, WANG Li-min1, FU Zhen-zhu1(), LI Bao-yin2()
Received:
2022-10-08
Online:
2023-05-26
Published:
2023-06-08
Contact:
FU Zhen-zhu, LI Bao-yin
E-mail:zhc5128@126.com;pearlgh2005@163.com;411865787@qq.com
ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding[J]. Biotechnology Bulletin, 2023, 39(5): 23-31.
Fig. 1 Types of plant pigments, biosynthetic pathways and representative flower species A-C: Chemical structure of anthocyanins, beet pigments and carotenoids, respectively. D: Anthocyanins biosynthesis pathway. E-H: The flower petals of Rosa, Phalaenopsis, Dianthus and Chrysanthemum morifolium, respectively. I: Carotenoids biosynthesis pathway. J-M: The flower petals of Camellia aureus, Narcissus, Osmanthus and Lilium asiatica. N: Betalains biosynthesis pathway. O-P: The flower petals of Mirabilis jalapa and Dianthus chinensis, respectively
[1] |
Rudall PJ. Colourful cones: how did flower colour first evolve?[J]. J Exp Bot, 2020, 71(3): 759-767.
doi: 10.1093/jxb/erz479 pmid: 31714579 |
[2] |
Vignolini S, Moyroud E, Glover BJ, et al. Analysing photonic structures in plants[J]. J R Soc Interface, 2013, 10(87): 20130394.
doi: 10.1098/rsif.2013.0394 URL |
[3] |
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. Plant J, 2008, 54(4): 733-749.
doi: 10.1111/j.1365-313X.2008.03447.x URL |
[4] |
戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016, 49(3): 529-542.
doi: 10.3864/j.issn.0578-1752.2016.03.011 |
Dai SL, Hong Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration[J]. Sci Agric Sin, 2016, 49(3): 529-542.
doi: 10.3864/j.issn.0578-1752.2016.03.011 |
|
[5] |
Wang LS, Hashimoto F, Shiraishi A, et al. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation[J]. J Plant Res, 2004, 117(1): 47-55.
doi: 10.1007/s10265-003-0130-6 URL |
[6] |
Bombarely A, Moser M, Amrad A, et al. Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida[J]. Nat Plants, 2016, 2(6): 16074.
doi: 10.1038/nplants.2016.74 |
[7] |
Zhao YW, Wang CK, Huang XY, et al. Anthocyanin stability and degradation in plants[J]. Plant Signal Behav, 2021, 16(12): 1987767.
doi: 10.1080/15592324.2021.1987767 URL |
[8] |
Behrens CE, Smith KE, Iancu CV, et al. Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding cassette transporter AtABCC2[J]. Sci Rep, 2019, 9(1): 437.
doi: 10.1038/s41598-018-37504-8 pmid: 30679715 |
[9] |
Sun Y, Li H, Huang JR. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts[J]. Mol Plant, 2012, 5(2): 387-400.
doi: 10.1093/mp/ssr110 pmid: 22201047 |
[10] |
Marinova K, Pourcel L, Weder B, et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat[J]. Plant Cell, 2007, 19(6): 2023-2038.
doi: 10.1105/tpc.106.046029 URL |
[11] |
Zhu CF, Bai C, Sanahuja G, et al. The regulation of carotenoid pigmentation in flowers[J]. Arch Biochem Biophys, 2010, 504(1): 132-141.
doi: 10.1016/j.abb.2010.07.028 pmid: 20688043 |
[12] |
Sun TH, Yuan H, Cao HB, et al. Carotenoid metabolism in plants: the role of plastids[J]. Mol Plant, 2018, 11(1): 58-74.
doi: S1674-2052(17)30273-3 pmid: 28958604 |
[13] |
Maoka T. Carotenoids as natural functional pigments[J]. J Nat Med, 2020, 74(1): 1-16.
doi: 10.1007/s11418-019-01364-x |
[14] |
Yamagishi M, Kishimoto S, Nakayama M. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily[J]. Plant Breed, 2010, 129(1): 100-107.
doi: 10.1111/pbr.2010.129.issue-1 URL |
[15] |
Moehs CP, Tian L, Osteryoung KW, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Mol Biol, 2001, 45(3): 281-293.
pmid: 11292074 |
[16] |
Kishimoto S, Ohmiya A. Regulation of carotenoid biosynthesis in petals and leaves of Chrysanthemum(Chrysanthemum morifolium)[J]. Physiol Plant, 2006, 128(3): 436-447.
doi: 10.1111/ppl.2006.128.issue-3 URL |
[17] |
Yoshioka S, Aida R, Yamamizo C, et al. The carotenoid cleavage dioxygenase 4(CmCCD4a)gene family encodes a key regulator of petal color mutation in Chrysanthemum[J]. Euphytica, 2012, 184(3): 377-387.
doi: 10.1007/s10681-011-0602-z URL |
[18] |
Lopez AB, van Eck J, Conlin BJ, et al. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers[J]. J Exp Bot, 2008, 59(2): 213-223.
doi: 10.1093/jxb/erm299 pmid: 18256051 |
[19] |
Yamagishi M. How genes paint lily flowers: Regulation of colouration and pigmentation patterning[J]. Sci Hortic, 2013, 163: 27-36.
doi: 10.1016/j.scienta.2013.07.024 URL |
[20] |
孙叶, 包建忠, 刘春贵, 等. 兰花花色基因工程研究进展[J]. 核农学报, 2015, 29(9): 1701-1710.
doi: 10.11869/j.issn.100-8551.2015.09.1701 |
Sun Y, Bao JZ, Liu CG, et al. Progresses on genetic engineering in orchid floral color[J]. J Nucl Agric Sci, 2015, 29(9): 1701-1710.
doi: 10.11869/j.issn.100-8551.2015.09.1701 |
|
[21] |
Li X, Lu M, Tang DQ, et al. Composition of carotenoids and flavonoids in Narcissus cultivars and their relationship with flower color[J]. PLoS One, 2015, 10(11): e0142074.
doi: 10.1371/journal.pone.0142074 URL |
[22] |
Zhang C, Wang YG, Fu JX, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans ‘Yanhong Gui’[J]. Trees, 2016, 30(4): 1207-1223.
doi: 10.1007/s00468-016-1359-8 URL |
[23] |
Brockington SF, Walker RH, Glover BJ, et al. Complex pigment evolution in the Caryophyllales[J]. New Phytol, 2011, 190(4): 854-864.
doi: 10.1111/j.1469-8137.2011.03687.x pmid: 21714182 |
[24] |
Timoneda A, Feng T, Sheehan H, et al. The evolution of betalain biosynthesis in Caryophyllales[J]. New Phytol, 2019, 224(1): 71-85.
doi: 10.1111/nph.15980 pmid: 31172524 |
[25] |
Gandía-Herrero F, García-Carmona F. Biosynthesis of betalains: yellow and violet plant pigments[J]. Trends Plant Sci, 2013, 18(6): 334-343.
doi: 10.1016/j.tplants.2013.01.003 pmid: 23395307 |
[26] | Mendel G. Gregor mendel's letters to Nägeli[J]. Genetics, 1950, 35:1-29. |
[27] | Trezzini GF, Zryd JP. Portulaca grandiflora: a model system for the study of the biochemistry and genetics of betalain synthesis[J]. Acta Hortic, 1990(280): 581-585. |
[28] |
Xu WJ, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci, 2015, 20(3): 176-185.
doi: 10.1016/j.tplants.2014.12.001 pmid: 25577424 |
[29] |
Liu CC, Chi C, Jin LJ, et al. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato[J]. Plant Cell Environ, 2018, 41(8): 1762-1775.
doi: 10.1111/pce.v41.8 URL |
[30] |
An JP, Yao JF, Xu RR, et al. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation[J]. Plant Cell Environ, 2018, 41(11): 2678-2692.
doi: 10.1111/pce.v41.11 URL |
[31] |
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways[J]. Trends Plant Sci, 2005, 10(5): 236-242.
doi: 10.1016/j.tplants.2005.03.002 pmid: 15882656 |
[32] |
Wu Y, Wen J, Xia YP, et al. Evolution and functional diversification of R2R3-MYB transcription factors in plants[J]. Hortic Res, 2022, 9: uhac058.
doi: 10.1093/hr/uhac058 URL |
[33] |
Albert NW, Lewis DH, Zhang HB, et al. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning[J]. Plant J, 2011, 65(5): 771-784.
doi: 10.1111/tpj.2011.65.issue-5 URL |
[34] |
Quattrocchio F, Wing J, van der Woude K, et al. Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color[J]. Plant Cell, 1999, 11(8): 1433-1444.
doi: 10.1105/tpc.11.8.1433 pmid: 10449578 |
[35] |
Zhang HC, Koes R, Shang HQ, et al. Identification and functional analysis of three new anthocyanin R2R3-MYB genes in Petunia[J]. Plant Direct, 2019, 3(1): e00114.
doi: 10.1002/pld3.114 URL |
[36] |
Albert NW, Davies KM, Lewis DH, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots[J]. Plant Cell, 2014, 26(3): 962-980.
doi: 10.1105/tpc.113.122069 URL |
[37] |
Ding BQ, Patterson EL, Holalu SV, et al. Two MYB proteins in a self-organizing activator-inhibitor system produce spotted pigmentation patterns[J]. Curr Biol, 2020, 30(5): 802-814.e8.
doi: S0960-9822(19)31700-2 pmid: 32155414 |
[38] |
Toledo-Ortiz G, Huq E, Rodríguez-Concepción M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors[J]. Proc Natl Acad Sci USA, 2010, 107(25): 11626-11631.
doi: 10.1073/pnas.0914428107 pmid: 20534526 |
[39] |
Welsch R, Medina J, Giuliano G, et al. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana[J]. Planta, 2003, 216(3): 523-534.
pmid: 12520345 |
[40] |
Yin WC, Hu ZL, Cui BL, et al. Suppression of the MADS-box gene SlMBP8 accelerates fruit ripening of tomato(Solanum lycopersicum)[J]. Plant Physiol Biochem, 2017, 118: 235-244.
doi: 10.1016/j.plaphy.2017.06.019 URL |
[41] |
Liu GY, Ren G, Guirgis A, et al. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary[J]. Plant Cell, 2009, 21(9): 2672-2687.
doi: 10.1105/tpc.108.060079 URL |
[42] |
Meng YY, Wang ZY, Wang YQ, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula[J]. Plant Cell, 2019, 31(11): 2751-2767.
doi: 10.1105/tpc.19.00480 URL |
[43] |
Sagawa JM, Stanley LE, LaFountain AM, et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers[J]. New Phytol, 2016, 209(3): 1049-1057.
doi: 10.1111/nph.2016.209.issue-3 URL |
[44] |
Wu MB, Xu X, Hu XW, et al. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit[J]. Plant Physiol, 2020, 183(3): 854-868.
doi: 10.1104/pp.20.00156 pmid: 32414899 |
[45] |
Polturak G, Aharoni A. “La vie en rose”: biosynthesis, sources, and applications of betalain pigments[J]. Mol Plant, 2018, 11(1): 7-22.
doi: S1674-2052(17)30307-6 pmid: 29081360 |
[46] |
Hirano H, Sakuta M, Komamine A. Inhibition of betacyanin accumulation by abscisic acid in suspension cultures of Phytolacca americana[J]. Zeitschrift Für Naturforschung C, 1996, 51(11-12): 818-822.
doi: 10.1515/znc-1996-11-1209 URL |
[47] |
Bianco-Colomas J. Qualitative and quantitative aspects of betalains biosynthesis in Amaranthus caudatus L. var. pendula seedlings[J]. Planta, 1980, 149(2): 176-180.
doi: 10.1007/BF00380880 pmid: 24306250 |
[48] |
Kochhar VK, Kochhar S, Mohr H. An analysis of the action of light on betalain synthesis in the seedling of Amaranthus caudatus, var. viridis[J]. Planta, 1981, 151(1): 81-87.
doi: 10.1007/BF00384241 pmid: 24301674 |
[49] |
Chang YC, Chiu YC, Tsao NW, et al. Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor[J]. Sci Rep, 2021, 11(1): 6086.
doi: 10.1038/s41598-021-85486-x |
[50] |
Li G, Meng XQ, Zhu MK, et al. Research progress of betalain in response to adverse stresses and evolutionary relationship compared with anthocyanin[J]. Molecules, 2019, 24(17): 3078.
doi: 10.3390/molecules24173078 URL |
[51] |
Polturak G, Heinig U, Grossman N, et al. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa[J]. Mol Plant, 2018, 11(1): 189-204.
doi: S1674-2052(17)30371-4 pmid: 29247705 |
[52] |
Hatlestad GJ, Akhavan NA, Sunnadeniya RM, et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway[J]. Nat Genet, 2015, 47(1): 92-96.
doi: 10.1038/ng.3163 pmid: 25436858 |
[53] |
Stracke R, Holtgräwe D, Schneider J, et al. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet(Beta vulgaris)[J]. BMC Plant Biol, 2014, 14: 249.
doi: 10.1186/s12870-014-0249-8 pmid: 25249410 |
[54] |
Bradley D, Xu P, Mohorianu II, et al. Evolution of flower color pattern through selection on regulatory small RNAs[J]. Science, 2017, 358(6365): 925-928.
doi: 10.1126/science.aao3526 pmid: 29146812 |
[55] |
Vandenbussche M, Chambrier P, Rodrigues Bento S, et al. Petunia, your next supermodel?[J]. Front Plant Sci, 2016, 7: 72.
doi: 10.3389/fpls.2016.00072 pmid: 26870078 |
[56] |
Iida S, Hoshino A, Johzuka-Hisatomi Y, et al. Floricultural traits and transposable elements in the Japanese and common morning glories[J]. Ann N Y Acad Sci, 1999, 870: 265-274.
doi: 10.1111/j.1749-6632.1999.tb08887.x URL |
[57] |
Itoh Y, Higeta D, Suzuki A, et al. Excision of transposable elements from the Chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation(Dianthus caryophyllus)[J]. Plant Cell Physiol, 2002, 43(5): 578-585.
doi: 10.1093/pcp/pcf065 URL |
[58] |
Suzuki M, Miyahara T, Tokumoto H, et al. Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o'clock(Mirabilis jalapa)[J]. J Plant Physiol, 2014, 171(17): 1586-1590.
doi: 10.1016/j.jplph.2014.07.010 URL |
[59] |
Gu ZY, Men SQ, Zhu J, et al. Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia ‘He Xie’[J]. J Exp Bot, 2019, 70(18): 4749-4762.
doi: 10.1093/jxb/erz245 URL |
[60] |
Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric Chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J]. Plant Cell, 1990, 2(4): 279-289.
doi: 10.2307/3869076 URL |
[61] |
Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color[J]. Plant Cell Physiol, 1998, 39(11): 1119-1126.
doi: 10.1093/oxfordjournals.pcp.a029312 URL |
[62] |
Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin[J]. Plant Cell Physiol, 2007, 48(11): 1589-1600.
doi: 10.1093/pcp/pcm131 pmid: 17925311 |
[63] |
Brugliera F, Tao GQ, Tems U, et al. Violet/blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors[J]. Plant Cell Physiol, 2013, 54(10): 1696-1710.
doi: 10.1093/pcp/pct110 pmid: 23926066 |
[64] |
Nishihara M, Higuchi A, Watanabe A, et al. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri[J]. BMC Plant Biol, 2018, 18(1): 331.
doi: 10.1186/s12870-018-1539-3 pmid: 30518324 |
[65] |
Yu J, Tu LH, Subburaj S, et al. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins[J]. Plant Cell Rep, 2021, 40(6): 1037-1045.
doi: 10.1007/s00299-020-02593-1 |
[66] |
Tasaki K, Yoshida M, Nakajima M, et al. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in Japanese Gentian with the CRISPR/Cas9 system[J]. BMC Plant Biol, 2020, 20(1): 370.
doi: 10.1186/s12870-020-02565-3 pmid: 32762648 |
[67] |
Li YB, Provenzano S, Bliek M, et al. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification[J]. New Phytol, 2016, 211(3): 1092-1107.
doi: 10.1111/nph.14008 pmid: 27214749 |
[68] |
Ye X, Al-Babili S, Klöti A, et al. Engineering the provitamin A(beta-carotene)biosynthetic pathway into(carotenoid-free)rice endosperm[J]. Science, 2000, 287(5451): 303-305.
doi: 10.1126/science.287.5451.303 pmid: 10634784 |
[69] |
Paine JA, Shipton CA, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content[J]. Nat Biotechnol, 2005, 23(4): 482-487.
doi: 10.1038/nbt1082 pmid: 15793573 |
[70] |
Watkins JL, Pogson BJ. Prospects for carotenoid biofortification targeting retention and catabolism[J]. Trends Plant Sci, 2020, 25(5): 501-512.
doi: S1360-1385(19)30346-2 pmid: 31956035 |
[71] |
Kishimoto S, Oda-Yamamizo C, Ohmiya A. Comparison of Petunia and Calibrachoa in carotenoid pigmentation of corollas[J]. Breed Sci, 2019, 69(1): 117-126.
doi: 10.1270/jsbbs.18130 URL |
[72] |
Jeknić Z, Jeknić S, Jevremović S, et al. Alteration of flower color in Iris germanica L. ‘Fire Bride’ through ectopic expression of phytoene synthase gene(crtB)from Pantoea agglomerans[J]. Plant Cell Rep, 2014, 33(8): 1307-1321.
doi: 10.1007/s00299-014-1617-4 pmid: 24801678 |
[73] |
Polturak G, Grossman N, Vela-Corcia D, et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals[J]. Proc Natl Acad Sci USA, 2017, 114(34): 9062-9067.
doi: 10.1073/pnas.1707176114 pmid: 28760998 |
[74] |
Gandía-Herrero F, García-Carmona F. Characterization of recombinant beta vulgaris 4, 5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains[J]. Planta, 2012, 236(1): 91-100.
doi: 10.1007/s00425-012-1593-2 pmid: 22270561 |
[1] | WU Qiao-yin, SHI You-zhi, LI Lin-lin, PENG Zheng, TAN Zai-yu, LIU Li-ping, ZHANG Juan, PAN Yong. In Situ Screening of Carotenoid Degrading Strains and the Application in Improving Quality and Aroma of Cigar [J]. Biotechnology Bulletin, 2023, 39(9): 192-201. |
[2] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[3] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[4] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[5] | MA Fang-fang, LIU Guan-wen, PANG Bing, JIANG Chun-mei, SHI Jun-ling. Strategies of Increasing Flavonoid Production in Engineered Bacteria by Intensifying the Efflux of Flavonoid in Cells [J]. Biotechnology Bulletin, 2023, 39(5): 63-76. |
[6] | ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2 [J]. Biotechnology Bulletin, 2023, 39(3): 290-300. |
[7] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[8] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[9] | ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective [J]. Biotechnology Bulletin, 2022, 38(7): 119-127. |
[10] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[11] | DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene [J]. Biotechnology Bulletin, 2022, 38(6): 27-33. |
[12] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[13] | YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase [J]. Biotechnology Bulletin, 2022, 38(12): 47-57. |
[14] | LUO Ya-fang, ZHU Chun-hua, XIAO Yu-ting, LI Fang-quan, ZHANG Jiang, WANG Yu-shu. Screening and Functional Analysis of UGT Genes Involved in the Flavonoid Biosynthesis of Brassica oleracea var. acephala [J]. Biotechnology Bulletin, 2022, 38(11): 194-201. |
[15] | KONG Qian, HUANG Wen-jie, WU Shao-wen, LI Kun, ZHANG Ming-wei, YAN Shi-juan. Establishment of HPLC Method for Simultaneous Determination of Ten Carotenoids [J]. Biotechnology Bulletin, 2022, 38(11): 80-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||