Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 44-53.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1249
Previous Articles Next Articles
ZHOU Ding-ding1,2(), LI Hui-hu3, TANG Xing-yong4, YU Fa-xin3, KONG Dan-yu2, LIU Yi2()
Received:
2022-10-11
Online:
2023-05-26
Published:
2023-06-08
Contact:
LIU Yi
E-mail:1223918603@qq.com;liuy@lsbg.cn
ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin[J]. Biotechnology Bulletin, 2023, 39(5): 44-53.
类型Category | 影响因素Affecting factors | 对甘草酸含量影响Effect on glycyrrhizic acid content | 参考文献References |
---|---|---|---|
非生物胁迫 Abiotic stress | 低温胁迫 Low temperature stress 光照 Light | 低温处理提高甘草酸含量一倍 | [ [ |
红光,低强度和高强度UV-B处理都提高甘草酸苷 | |||
低光强增加甘草酸含量,100 μmol m-2 s-1的光照下甘草酸浓度最高 | [ | ||
干旱胁迫 Drought stress | 适度干旱提高甘草酸含量和总量,严重干旱提高甘草酸含量,降低甘草酸总量 | [ | |
10% PEG6000处理提高改良霍格兰营养液培养的甘草的甘草酸含量,10%和20% PEG6000处理降低1/2MS营养液培养的甘草的甘草酸含量 | [ | ||
盐胁迫 Salt stress | 盐胁迫(NaCl)诱导SQS、β-AS和CYP88D6的表达,提高甘草酸含量 | [ | |
复合盐胁迫(NaCl、CaCl2和MgSO4)抑制甘草酸积累 | [ | ||
营养胁迫 Nutritional stress | 高磷促进甘草酸积累 | [ | |
缺Mn处理降低甘草酸积累 土壤中总钾含量与甘草酸含量呈负相关 | [ [ | ||
生物因素 Biotic factors | 根瘤菌Rhizobacteria Mesorhizobium sp J8 | 接种J8后,甘草酸含量提高到3.2倍 | [ |
丛枝菌根真菌 Arbuscular mycorrhizal fungi Glomus mosseae | 接种Glomus mosseae甘草酸含量增加3-9倍 | [ | |
酵母Yeast Meyerozyma guilliermondii | 接种M. guilliermondii后,甘草酸含量比对照高5.3倍 | [ | |
酵母Yeast Pichia pastoris | 接种Pichia pastoris后甘草酸浓度提高3.89倍 | [ |
Table 1 Factors affecting the content of glycyrrhizic acid
类型Category | 影响因素Affecting factors | 对甘草酸含量影响Effect on glycyrrhizic acid content | 参考文献References |
---|---|---|---|
非生物胁迫 Abiotic stress | 低温胁迫 Low temperature stress 光照 Light | 低温处理提高甘草酸含量一倍 | [ [ |
红光,低强度和高强度UV-B处理都提高甘草酸苷 | |||
低光强增加甘草酸含量,100 μmol m-2 s-1的光照下甘草酸浓度最高 | [ | ||
干旱胁迫 Drought stress | 适度干旱提高甘草酸含量和总量,严重干旱提高甘草酸含量,降低甘草酸总量 | [ | |
10% PEG6000处理提高改良霍格兰营养液培养的甘草的甘草酸含量,10%和20% PEG6000处理降低1/2MS营养液培养的甘草的甘草酸含量 | [ | ||
盐胁迫 Salt stress | 盐胁迫(NaCl)诱导SQS、β-AS和CYP88D6的表达,提高甘草酸含量 | [ | |
复合盐胁迫(NaCl、CaCl2和MgSO4)抑制甘草酸积累 | [ | ||
营养胁迫 Nutritional stress | 高磷促进甘草酸积累 | [ | |
缺Mn处理降低甘草酸积累 土壤中总钾含量与甘草酸含量呈负相关 | [ [ | ||
生物因素 Biotic factors | 根瘤菌Rhizobacteria Mesorhizobium sp J8 | 接种J8后,甘草酸含量提高到3.2倍 | [ |
丛枝菌根真菌 Arbuscular mycorrhizal fungi Glomus mosseae | 接种Glomus mosseae甘草酸含量增加3-9倍 | [ | |
酵母Yeast Meyerozyma guilliermondii | 接种M. guilliermondii后,甘草酸含量比对照高5.3倍 | [ | |
酵母Yeast Pichia pastoris | 接种Pichia pastoris后甘草酸浓度提高3.89倍 | [ |
类型Category | 影响因素Factors | 对甘草苷含量影响Effect on liquiritin content | 参考文献References |
---|---|---|---|
非生物胁迫 Abiotic stress | 光照 Light | 低光强(100 μmol m-2 s-1)增加甘草苷含量 | [ |
干旱胁迫 Drought stress | 适度干旱提高甘草苷含量 | [ | |
盐胁迫 Salt stress | 盐处理上调PAL、C4H、4CL、CHS、GuUGT2和GuUGT3等甘草苷表达,促进甘草苷生成 | [ | |
营养胁迫 Nutritional stress | 高磷提高甘草苷浓度 | [ | |
缺Mn处理下显著降低甘草苷含量 | [ | ||
土壤中总钾含量与甘草苷浓度呈显著负相关 | [ | ||
生物因素 Biotic factor | 丛枝菌根真菌 Arbuscular mycorrhizal fungi Rhizophagus irregularis | 接种R. irregularis后促进CHS的表达,增加甘草苷浓度 | [ |
Table 2 Factors influencing the content of liquiritin
类型Category | 影响因素Factors | 对甘草苷含量影响Effect on liquiritin content | 参考文献References |
---|---|---|---|
非生物胁迫 Abiotic stress | 光照 Light | 低光强(100 μmol m-2 s-1)增加甘草苷含量 | [ |
干旱胁迫 Drought stress | 适度干旱提高甘草苷含量 | [ | |
盐胁迫 Salt stress | 盐处理上调PAL、C4H、4CL、CHS、GuUGT2和GuUGT3等甘草苷表达,促进甘草苷生成 | [ | |
营养胁迫 Nutritional stress | 高磷提高甘草苷浓度 | [ | |
缺Mn处理下显著降低甘草苷含量 | [ | ||
土壤中总钾含量与甘草苷浓度呈显著负相关 | [ | ||
生物因素 Biotic factor | 丛枝菌根真菌 Arbuscular mycorrhizal fungi Rhizophagus irregularis | 接种R. irregularis后促进CHS的表达,增加甘草苷浓度 | [ |
[1] |
Zhao YJ, Lv B, Feng XD, et al. Perspective on biotransformation and de novo biosynthesis of licorice constituents[J]. J Agric Food Chem, 2017, 65(51): 11147-11156.
doi: 10.1021/acs.jafc.7b04470 URL |
[2] |
Zhang QY, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao(licorice)[J]. J Chromatogr A, 2009, 1216(11): 1954-1969.
doi: 10.1016/j.chroma.2008.07.072 URL |
[3] |
Yu XP, Su WC, Wang Q, et al. Inhibitory mechanism of cardanols on tyrosinase[J]. Process Biochem, 2016, 51(12): 2230-2237.
doi: 10.1016/j.procbio.2016.09.019 URL |
[4] |
Mizutani K, Kuramoto T, Tamura Y, et al. Sweetness of glycyrrhetic acid 3-O-β-d-monoglucuronide and the related glycosides[J]. Biosci Biotechnol Biochem, 1994, 58(3): 554-555.
doi: 10.1271/bbb.58.554 URL |
[5] |
Wang CC, Cai H, Zhao H, et al. Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice[J]. J Pharm Biomed Anal, 2018, 161: 464-473.
doi: S0731-7085(18)31132-4 pmid: 30218948 |
[6] |
Kim JK, Oh SM, Kwon HS, et al. Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages[J]. Biochem Biophys Res Commun, 2006, 345(3): 1215-1223.
doi: 10.1016/j.bbrc.2006.05.035 URL |
[7] |
Yang R, Yuan BC, Ma YS, et al. The anti-inflammatory activity of licorice, a widely used Chinese herb[J]. Pharm Biol, 2017, 55(1): 5-18.
pmid: 27650551 |
[8] |
Omer MO, Almalki WH, Shahid I, et al. Comparative study to evaluate the anti-viral efficacy of Glycyrrhiza glabra extract and ribavirin against the Newcastle disease virus[J]. Pharmacognosy Res, 2014, 6(1): 6-11.
doi: 10.4103/0974-8490.122911 URL |
[9] |
Fukuchi K, Okudaira N, Adachi K, et al. Antiviral and antitumor activity of licorice root extracts[J]. In Vivo, 2016, 30(6): 777-785.
pmid: 27815461 |
[10] |
Chung WT, Lee SH, Kim JD, et al. Effect of the extracts from Glycyrrhiza uralensis Fisch on the growth characteristics of human cell lines: Anti-tumor and immune activation activities[J]. Cytotechnology, 2001, 37(1): 55-64.
doi: 10.1023/A:1016111713056 pmid: 19002915 |
[11] |
Zeng G, Shen H, Tang G, et al. A polysaccharide from the alkaline extract of Glycyrrhiza inflata induces apoptosis of human oral cancer SCC-25 cells via mitochondrial pathway[J]. Tumour Biol, 2015, 36(9): 6781-6788.
doi: 10.1007/s13277-015-3359-5 URL |
[12] |
Chin YW, Jung HA, Liu Y, et al. Anti-oxidant constituents of the roots and stolons of licorice(Glycyrrhiza glabra)[J]. J Agric Food Chem, 2007, 55(12): 4691-4697.
doi: 10.1021/jf0703553 URL |
[13] |
Lu J, Liang WX, Wei KH, et al. Induction of signal molecules and expression of functional genes after Pichia pastoris stimulation in Glycyrrhiza uralensis Fisch adventitious roots[J]. J Food Biochem, 2019, 43(4): e12798.
doi: 10.1111/jfbc.2019.43.issue-4 URL |
[14] |
Hayashi H, Hiraoka N, Ikeshiro Y. Molecular cloning and functional expression of cDNAs for Glycyrrhiza glabra squalene synthase[J]. Biol Pharm Bull, 1996, 19(10): 1387-1389.
pmid: 8913521 |
[15] |
Kim DH, Lee SW, Han MJ. Biotransformation of glycyrrhizin to 18beta-glycyrrhetinic acid-3-O-β-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium[J]. Biol Pharm Bull, 1999, 22(3): 320-322.
pmid: 10220293 |
[16] |
Han YX, Jia QJ, Yang DF, et al. Current advances in environmental stimuli regulating the glycyrrhizic acid biosynthesis pathway[J]. Fitoterapia, 2021, 151: 104860.
doi: 10.1016/j.fitote.2021.104860 URL |
[17] |
Liu Y, Zhan XJ, Li WD, et al. Copy number variations of functional genes influence contents of glycyrrhizic acid in Glycyrrhiza uralensis[J]. Acta Physiol Plant, 2014, 36(6): 1433-1440.
doi: 10.1007/s11738-014-1521-0 URL |
[18] | Lu J, Liang WX, Li JL, et al. Integrated morphology analysis, metabolomic analysis and gene expression to assess the quality of four adventitious roots lines of Glycyrrhiza uralensis Fisch[J]. Plant Cell Tissue Organ Cult PCTOC, 2018, 135(1): 169-177. |
[19] | Dai ZB, Cui GH, Zhou SF, et al. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation[J]. J Plant Physiol, 2011, 168(2): 148-157. |
[20] |
Ohyama K, Suzuki M, Masuda K, et al. Chemical phenotypes of the hmg1 and hmg2 mutants of Arabidopsis demonstrate the in-planta role of HMG-CoA reductase in triterpene biosynthesis[J]. Chem Pharm Bull(Tokyo), 2007, 55(10): 1518-1521.
doi: 10.1248/cpb.55.1518 URL |
[21] |
Seki H, Ohyama K, Sawai S, et al. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J]. Proc Natl Acad Sci USA, 2008, 105(37): 14204-14209.
doi: 10.1073/pnas.0803876105 pmid: 18779566 |
[22] |
Zhu M, Wang CX, Sun WT, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metab Eng, 2018, 45: 43-50.
doi: 10.1016/j.ymben.2017.11.009 URL |
[23] |
Seki H, Sawai S, Ohyama K, et al. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J]. Plant Cell, 2011, 23(11): 4112-4123.
doi: 10.1105/tpc.110.082685 URL |
[24] |
Xu GJ, Cai W, Gao W, et al. A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin[J]. New Phytol, 2016, 212(1): 123-135.
doi: 10.1111/nph.14039 pmid: 27252088 |
[25] |
Chung SY, Seki H, Fujisawa Y, et al. A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis[J]. Nat Commun, 2020, 11(1): 5664.
doi: 10.1038/s41467-020-19399-0 pmid: 33199711 |
[26] |
Chen K, Hu ZM, Song W, et al. Diversity of O-glycosyltransferases contributes to the biosynthesis of flavonoid and triterpenoid glycosides in Glycyrrhiza uralensis[J]. ACS Synth Biol, 2019, 8(8): 1858-1866.
doi: 10.1021/acssynbio.9b00171 URL |
[27] |
Jozwiak A, Sonawane PD, Panda S, et al. Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery[J]. Nat Chem Biol, 2020, 16(7): 740-748.
doi: 10.1038/s41589-020-0541-x pmid: 32424305 |
[28] |
Nomura Y, Seki H, Suzuki T, et al. Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin[J]. Plant J, 2019, 99(6): 1127-1143.
doi: 10.1111/tpj.14409 |
[29] |
Yin Y, Li YP, Jiang D, et al. De novo biosynthesis of liquiritin in Saccharomyces cerevisiae[J]. Acta Pharm Sin B, 2020, 10(4): 711-721.
doi: 10.1016/j.apsb.2019.07.005 URL |
[30] |
Liu WX, Feng Y, Yu SH, et al. The flavonoid biosynthesis network in plants[J]. Int J Mol Sci, 2021, 22(23): 12824.
doi: 10.3390/ijms222312824 URL |
[31] |
Bomati EK, Austin MB, Bowman ME, et al. Structural elucidation of Chalcone reductase and implications for deoxychalcone biosynthesis[J]. J Biol Chem, 2005, 280(34): 30496-30503.
doi: 10.1074/jbc.M502239200 pmid: 15970585 |
[32] |
Jiang D, Li P, Yin Y, et al. Molecular cloning and functional characterization of UGTs from Glycyrrhiza uralensis flavonoid pathway[J]. Int J Biol Macromol, 2021, 192: 1108-1116.
doi: 10.1016/j.ijbiomac.2021.09.136 URL |
[33] | Marui A, Nagafuchi T, Shinogi Y, et al. Cultivation research for high-glycyrrhizin licorice by applying low temperature and Ca2+ ion as environmental stress based on field investigation[J]. J Fac Agric Kyushu Univ, 2011, 56(2): 367-371. |
[34] |
Afreen F, Zobayed SMA, Kozai T. Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system[J]. Plant Physiol Biochem, 2005, 43(12): 1074-1081.
doi: 10.1016/j.plaphy.2005.11.005 URL |
[35] |
Hou JL, Li WD, Zheng QY, et al. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch[J]. Biochem Syst Ecol, 2010, 38(2): 160-168.
doi: 10.1016/j.bse.2009.12.026 URL |
[36] |
Li WD, Hou JL, Wang WQ, et al. Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis[J]. Russ J Plant Physiol, 2011, 58(3): 538-542.
doi: 10.1134/S1021443711030101 URL |
[37] |
Khaitov B, Urmonova M, Karimov A, et al. Licorice(Glycyrrhiza glabra)—growth and phytochemical compound secretion in degraded lands under drought stress[J]. Sustainability, 2021, 13(5): 2923.
doi: 10.3390/su13052923 URL |
[38] |
Nasrollahi V, Mirzaie-Asl A, Piri K, et al. The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice(Glycyrrhiza glabra)[J]. Phytochemistry, 2014, 103: 32-37.
doi: S0031-9422(14)00107-1 pmid: 24768283 |
[39] |
Hosseini MS, Samsampour D, Ebrahimi M, et al. Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice(Glycyrrhiza glabra L.) grown in the field[J]. Phytochemistry, 2018, 156: 124-134.
doi: S0031-9422(18)30181-X pmid: 30278303 |
[40] |
Yue L, Uwaremwe C, Tian Y, et al. Bacillus amyloliquefaciens rescues glycyrrhizic acid loss under drought stress in Glycyrrhiza uralensis by activating the jasmonic acid pathway[J]. Front Microbiol, 2022, 12: 798525.
doi: 10.3389/fmicb.2021.798525 URL |
[41] |
Xie W, Hao ZP, Yu M, et al. Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis[J]. Plant Soil, 2019, 439(1/2): 243-257.
doi: 10.1007/s11104-018-3861-9 |
[42] |
Srivastava M, Singh G, Sharma S, et al. Elicitation enhanced the yield of glycyrrhizin and antioxidant activities in hairy root cultures of Glycyrrhiza glabra L[J]. J Plant Growth Regul, 2019, 38(2): 373-384.
doi: 10.1007/s00344-018-9847-2 pmid: 32214632 |
[43] |
Yao H, Wang F, Bi Q, et al. Combined analysis of pharmaceutical active ingredients and transcriptomes of Glycyrrhiza uralensis under PEG6000-induced drought stress revealed glycyrrhizic acid and flavonoids accumulation via JA-mediated signaling[J]. Front Plant Sci, 2022, 13: 920172.
doi: 10.3389/fpls.2022.920172 URL |
[44] |
Han YX, Hou ZN, Zhang XM, et al. Multi-dimensional “projection” - the impact of abiotic stresses on the content of seven active compounds and expression of related genes in Glycyrrhiza uralensis Fisch[J]. Environ Exp Bot, 2022, 197: 104846.
doi: 10.1016/j.envexpbot.2022.104846 URL |
[45] |
Shirazi Z, Aalami A, Tohidfar M, et al. Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress[J]. Protoplasma, 2019, 256(3): 827-837.
doi: 10.1007/s00709-018-01340-4 pmid: 30623261 |
[46] |
Behdad A, Mohsenzadeh S, Azizi M, et al. Salinity effects on physiological and phytochemical characteristics and gene expression of two Glycyrrhiza glabra L. populations[J]. Phytochemistry, 2020, 171: 112236.
doi: 10.1016/j.phytochem.2019.112236 URL |
[47] |
Wang CC, Chen LH, Cai ZC, et al. Dynamic variations in multiple bioactive constituents under salt stress provide insight into quality formation of licorice[J]. Molecules, 2019, 24(20): 3670.
doi: 10.3390/molecules24203670 URL |
[48] |
Hosseini MS, Ebrahimi M, Abadía J, et al. Growth, phytochemical parameters and glycyrrhizin production in licorice(Glycyrrhiza glabra L.) grown in the field with saline water irrigation[J]. Ind Crops Prod, 2022, 177: 114444.
doi: 10.1016/j.indcrop.2021.114444 URL |
[49] |
Wang D, Wan CY, Wang WQ, et al. Effects of manganese deficiency on growth and contents of active constituents of Glycyrrhiza uralensis fisch[J]. Commun Soil Sci Plant Anal, 2012, 43(17): 2218-2227.
doi: 10.1080/00103624.2012.701684 URL |
[50] |
Liu Y, Li YM, Luo W, et al. Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages[J]. Plant Soil, 2020, 456(1-2): 61-79.
doi: 10.1007/s11104-020-04692-0 |
[51] | Kusaba I, Nakao T, Maita H, et al. Mesorhizobium sp. J8 can establish symbiosis with Glycyrrhiza uralensis, increasing glycyrrhizin production[J]. Plant Biotechnol(Tokyo), 2021, 38(1): 57-66. |
[52] |
Orujei Y, Shabani L, Sharifi-Tehrani M. Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi[J]. Russ J Plant Physiol, 2013, 60(6): 855-860.
doi: 10.1134/S1021443713050129 URL |
[53] |
Li JL, Liu SJ, Wang J, et al. Gene expression of glycyrrhizin acid and accumulation of endogenous signaling molecule in Glycyrrhiza uralensis Fisch adventitious roots after Saccharomyces cerevisiae and Meyerozyma guilliermondii applications[J]. Biotechnol Appl Biochem, 2017, 64(5): 700-711.
doi: 10.1002/bab.2017.64.issue-5 URL |
[54] |
Wang CC, Chen LH, Cai ZC, et al. Comparative proteomic analysis reveals the molecular mechanisms underlying the accumulation difference of bioactive constituents in Glycyrrhiza uralensis fisch under salt stress[J]. J Agric Food Chem, 2020, 68(5): 1480-1493.
doi: 10.1021/acs.jafc.9b04887 URL |
[55] |
Xie W, Hao ZP, Zhou XF, et al. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress[J]. Mycorrhiza, 2018, 28(3): 285-300.
doi: 10.1007/s00572-018-0827-y |
[56] |
Li D, Xu GJ, Ren GX, et al. The application of ultra-high-performance liquid chromatography coupled with a LTQ-orbitrap mass technique to reveal the dynamic accumulation of secondary metabolites in licorice under ABA stress[J]. Molecules, 2017, 22(10): 1742.
doi: 10.3390/molecules22101742 URL |
[57] |
Qiao J, Luo ZL, Li YP, et al. Effect of abscisic acid on accumulation of five active components in root of Glycyrrhiza uralensis[J]. Molecules, 2017, 22(11): 1982.
doi: 10.3390/molecules22111982 URL |
[58] |
Liu JN, Wu LJ, Wei SL, et al. Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice(Glycyrrhiza uralensis Fisch)[J]. Plant Growth Regul, 2007, 52(1): 29-39.
doi: 10.1007/s10725-007-9174-2 URL |
[59] |
Chen ML, Yang G, Sheng Y, et al. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress[J]. Front Plant Sci, 2017, 8: 931.
doi: 10.3389/fpls.2017.00931 URL |
[60] |
Johny L, Cahill DM, Adholeya A. AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner[J]. Rhizosphere, 2021, 17: 100314.
doi: 10.1016/j.rhisph.2021.100314 URL |
[61] |
Schmid C, Mittermeier-Kleβinger V, Tabea Peters VC, et al. Quantitative mapping of flavor and pharmacologically active compounds in European licorice roots(Glycyrrhiza glabra L.) in response to growth conditions and arbuscular mycorrhiza symbiosis[J]. J Agric Food Chem, 2021, 69(44): 13173-13189.
doi: 10.1021/acs.jafc.1c05576 URL |
[62] |
He C, Wang WQ, Hou JL. Plant growth and soil microbial impacts of enhancing licorice with inoculating dark septate endophytes under drought stress[J]. Front Microbiol, 2019, 10: 2277.
doi: 10.3389/fmicb.2019.02277 pmid: 31649632 |
[63] |
Xie ZC. Chu YK, Zhang WJ, et al. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environ Exp Bot, 2019, 158: 99-106.
doi: 10.1016/j.envexpbot.2018.11.021 URL |
[64] |
Wang J, Li JL, Li J, et al. LSP1, a responsive protein from Meyerozyma guilliermondii, elicits defence response and improves glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis Fisch adventitious roots[J]. J Cell Physiol, 2017, 232(12): 3510-3519.
doi: 10.1002/jcp.v232.12 URL |
[65] |
Huang AC, Jiang T, Liu YX, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): eaau6389.
doi: 10.1126/science.aau6389 URL |
[66] |
Chen CY, Zhong CF, Gao X, et al. Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites[J]. Environ Microbiome, 2022, 17(1): 23.
doi: 10.1186/s40793-022-00418-0 |
[67] |
Zhong CF, Chen CY, Gao X, et al. Multi-omics profiling reveals comprehensive microbe-plant-metabolite regulation patterns for medicinal plant Glycyrrhiza uralensis Fisch[J]. Plant Biotechnol J, 2022, 20(10): 1874-1887.
doi: 10.1111/pbi.v20.10 URL |
[68] |
Wang DD, Zhang ZX, Yang L, et al. ARPI, β-AS, and UGE regulate glycyrrhizin biosynthesis in Glycyrrhiza uralensis hairy roots[J]. Plant Cell Rep, 2021, 40(7): 1285-1296.
doi: 10.1007/s00299-021-02712-6 |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[3] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[4] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[5] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[6] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[7] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[8] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[9] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[10] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[11] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[12] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[13] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[14] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[15] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||