Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (7): 219-227.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1358
Previous Articles Next Articles
ZHAO Lin-yan1(), XU Wu-mei1, WANG Hao-ji1, WANG Kun-yan2, WEI Fu-gang3, YANG Shao-zhou3, GUAN Hui-lin1()
Received:
2022-11-04
Online:
2023-07-26
Published:
2023-08-17
Contact:
GUAN Hui-lin
E-mail:zhaolinyan1166@163.com;ghl0871@aliyun.com
ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping[J]. Biotechnology Bulletin, 2023, 39(7): 219-227.
土壤因子 | T0 | T1 | T2 |
---|---|---|---|
pH | 6.44±0.02b | 6.75±0.06a | 6.86±0.03a |
EC/(μS·cm-1) | 123.00±15.90a | 144.25±14.34a | 120.50±16.06a |
NH4+-N/(mg·kg-1) | 6.73±0.39a | 5.84±0.28ab | 5.30±0.21b |
NO3--N/(mg·kg-1) | 11.31±0.93b | 15.93±0.33a | 12.85±0.43ab |
AP/(mg·kg-1) | 25.31±7.54a | 31.88±1.81a | 23.30±1.61a |
AK/(mg·kg-1) | 177.37±12.07b | 261.44±13a | 250.56±10.7a |
OM/(g·kg-1) | 12.98±1.06ab | 13.91±0.39ab | 11.80±0.44b |
Table 1 Effects of biochar application on the soil physicochemical properties under continuous cropping of P. notoginseng
土壤因子 | T0 | T1 | T2 |
---|---|---|---|
pH | 6.44±0.02b | 6.75±0.06a | 6.86±0.03a |
EC/(μS·cm-1) | 123.00±15.90a | 144.25±14.34a | 120.50±16.06a |
NH4+-N/(mg·kg-1) | 6.73±0.39a | 5.84±0.28ab | 5.30±0.21b |
NO3--N/(mg·kg-1) | 11.31±0.93b | 15.93±0.33a | 12.85±0.43ab |
AP/(mg·kg-1) | 25.31±7.54a | 31.88±1.81a | 23.30±1.61a |
AK/(mg·kg-1) | 177.37±12.07b | 261.44±13a | 250.56±10.7a |
OM/(g·kg-1) | 12.98±1.06ab | 13.91±0.39ab | 11.80±0.44b |
Fig. 1 Fungal OTU richness in the rhizosphere soil of P. notoginseng under the treatments with different biochar application amounts A: The numbers of shared and unique OTUs; B: rarefied OTU richness. Different letters marked indicate significant difference, the same below
Fig. 2 α-diversity index of soil fungi in the rhizosphere of P. notoginseng and its correlation with soil pH under the treatments with different biochar application amounts
Fig. 3 Relative abundance of soil fungi at the phylum level in the rhizosphere of P. notoginseng under the treatments with different biochar application amounts
Fig. 4 Relative abundances of Mortierella and Fusarium, and the abundances of F. oxysporum under the trea-tments with different biochar application amounts A: Relative abundance of Mortierella. B: Relative abundance of Fusarium. C: F. oxysporum abundance
Fig. 5 Correlations between soil physicochemical properties and the relative abundances of Mortierella and Fusarium, and the abundances of F. oxysporum PC1 is the first component based on the principal component analysis of the ACE, Chao 1 and PD index, which explained 95.2% of the total variance and used as a measure to show the α diversity of the fungal community, the same below
Fig. 8 Correlations between soil physicochemical properties, fungal α diversity, relative abundance of Mortierella, F. oxysporum abundance, and the survival rate of P. notoginseng
[1] |
Liao PR, Liu PF, Wang YL, et al. Stereoscopic cultivation of Panax notoginseng: a new approach to overcome the continuous cropping obstacle[J]. Ind Crops Prod, 2018, 126: 38-47.
doi: 10.1016/j.indcrop.2018.09.042 URL |
[2] |
Li H, Deng CQ, Chen BY, et al. Total saponins of Panax notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion[J]. J Ethnopharmacol, 2009, 121(3): 412-418.
doi: 10.1016/j.jep.2008.10.042 URL |
[3] | 孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3): 885-893. |
Sun XT, Li L, Long GQ, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chin J Ecol, 2015, 34(3): 885-893. | |
[4] | 张子龙, 李凯明, 杨建忠, 等. 轮作对三七连作障碍的消减效应研究[J]. 西南大学学报: 自然科学版, 2015, 37(8): 39-46. |
Zhang ZL, Li KM, Yang JZ, et al. Effects of crop rotation for reducing continuous cropping obstacles in Panax notoginseng cultivation[J]. J Southwest Univ Nat Sci Ed, 2015, 37(8): 39-46. | |
[5] |
Ahmad M, Rajapaksha AU, Lim JE, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33.
doi: 10.1016/j.chemosphere.2013.10.071 pmid: 24289982 |
[6] | Semida WM, Beheiry HR, Sétamou M, et al. Biochar implications for sustainable agriculture and environment: a review[J]. S Afr N J Bot, 2019, 127: 333-347. |
[7] |
Yu HW, Zou WX, Chen JJ, et al. Biochar amendment improves crop production in problem soils: a review[J]. J Environ Manage, 2019, 232: 8-21.
doi: S0301-4797(18)31259-3 pmid: 30466010 |
[8] |
Palansooriya KN, Wong JTF, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1(1): 3-22.
doi: 10.1007/s42773-019-00009-2 |
[9] |
Pathy A, Ray J, Paramasivan B. Biochar amendments and its impact on soil biota for sustainable agriculture[J]. Biochar, 2020, 2(3): 287-305.
doi: 10.1007/s42773-020-00063-1 |
[10] |
周丽靖, 王亚军, 谢忠奎, 等. 生物炭对兰州百合(Lilium davidii var. unicolor)连作土壤的改良作用[J]. 中国沙漠, 2019, 39(2): 134-143.
doi: 10.7522/j.issn.1000-694X.2018.00109 |
Zhou LJ, Wang YJ, Xie ZK, et al. Improvement effect of biochar on the degraded soil of Lanzhou lily field[J]. J Desert Res, 2019, 39(2): 134-143.
doi: 10.7522/j.issn.1000-694X.2018.00109 |
|
[11] | 杨莉, 文子伟, 付婧, 等. 生物质炭对连作参地人参种苗与土壤质量的影响[J]. 中药材, 2020, 43(4): 791-796. |
Yang L, Wen ZW, Fu J, et al. Effect of biochar on seedling and soil quality of continuous cropping Panax ginseng[J]. J Chin Med Mater, 2020, 43(4): 791-796. | |
[12] |
杨莉, 勾颖, 文子伟, 等. 生物质炭对连作参地土壤肥力及微生物特性的影响[J]. 核农学报, 2022, 36(6): 1244-1253.
doi: 10.11869/j.issn.100-8551.2022.06.1244 |
Yang L, Gou Y, Wen ZW, et al. Effect of biochar on soil fertility and microbial properties in continuous cropping ginseng field[J]. J Nucl Agric Sci, 2022, 36(6): 1244-1253.
doi: 10.11869/j.issn.100-8551.2022.06.1244 |
|
[13] |
Wu H, Qin X, Wu H, et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture[J]. Chemosphere, 2020, 246: 125835.
doi: 10.1016/j.chemosphere.2020.125835 URL |
[14] |
Zhao LY, Guan HL, Wang R, et al. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata[J]. J Soil Sci Plant Nutr, 2021, 21(2): 1318-1328.
doi: 10.1007/s42729-021-00442-y |
[15] |
Newsham KK, Hopkins DW, Carvalhais LC, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic[J]. Nat Clim Change, 2016, 6(2): 182-186.
doi: 10.1038/NCLIMATE2806 |
[16] | 唐彬彬, 董姚君, 贺密密, 等. 云南文山健康三七种植年限对根际微生物群落的影响[J]. 微生物学通报, 2020, 47(9): 2857-2866. |
Tang BB, Dong YJ, He MM, et al. Effects of different planting years of healthy Panax notoginseng on the rhizosphere microbial community in Wenshan of Yunnan Province[J]. Microbiol China, 2020, 47(9): 2857-2866. | |
[17] |
Miao CP, Mi QL, Qiao XG, et al. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens[J]. J Ginseng Res, 2016, 40(2): 127-134.
doi: 10.1016/j.jgr.2015.06.004 URL |
[18] |
Xu WM, Wu FY, Wang HJ, et al. Key soil parameters affecting the survival of Panax notoginseng under continuous cropping[J]. Sci Rep, 2021, 11(1): 5656.
doi: 10.1038/s41598-021-85171-z |
[19] |
Lievens B, Brouwer M, Vanachter ACRC, et al. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray[J]. Environ Microbiol, 2005, 7(11): 1698-1710.
doi: 10.1111/j.1462-2920.2005.00816.x pmid: 16232285 |
[20] |
Li SM, Barreto V, Li RW, et al. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. J Anal Appl Pyrolysis, 2018, 133: 136-146.
doi: 10.1016/j.jaap.2018.04.010 URL |
[21] |
Masud MM, Jiu YL, Ren KX. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol[J]. Pedosphere, 2014, 24(6): 791-798.
doi: 10.1016/S1002-0160(14)60066-7 URL |
[22] |
Gul S, Whalen JK, Thomas BW, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agric Ecosyst Environ, 2015, 206: 46-59.
doi: 10.1016/j.agee.2015.03.015 URL |
[23] |
占亚楠, 王智, 孟亚利. 生物炭提高土壤磷素有效性的整合分析[J]. 应用生态学报, 2020, 31(4): 1185-1193.
doi: 10.13287/j.1001-9332.202004.024 |
Zhan YN, Wang Z, Meng YL. Biochar addition improves soil phosphorus availability: a meta-analysis[J]. Chin J Appl Ecol, 2020, 31(4): 1185-1193.
doi: 10.13287/j.1001-9332.202004.024 |
|
[24] | 刘玮晶, 刘烨, 高晓荔, 等. 外源生物质炭对土壤中铵态氮素滞留效应的影响[J]. 农业环境科学学报, 2012, 31(5): 962-968. |
Liu WJ, Liu Y, Gao XL, et al. Effects of biomass charcoals on retention of ammonium nitrogen in soils[J]. J Agro Environ Sci, 2012, 31(5): 962-968. | |
[25] | 王翰琨, 吴永波, 刘俊萍, 等. 生物炭对土壤氮循环及其功能微生物的影响研究进展[J]. 生态与农村环境学报, 2022, 38(6): 689-701. |
Wang HK, Wu YB, Liu JP, et al. A review of research advances in the effects of biochar on soil nitrogen cycling and its functional microorganisms[J]. J Ecol Rural Environ, 2022, 38(6): 689-701. | |
[26] |
Meng L, Sun T, Li M, et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress[J]. Ecotoxicol Environ Saf, 2019, 171: 75-83.
doi: 10.1016/j.ecoenv.2018.12.065 URL |
[27] |
Tarin MWK, Fan LL, Xie DJ, et al. Response of soil fungal diversity and community composition to varying levels of bamboo biochar in red soils[J]. Microorganisms, 2021, 9(7): 1385.
doi: 10.3390/microorganisms9071385 URL |
[28] |
Li X, Wang T, Chang SX, et al. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis[J]. Sci Total Environ, 2020, 749: 141593.
doi: 10.1016/j.scitotenv.2020.141593 URL |
[29] |
Dai ZM, Xiong XQ, Zhu H, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3(3): 239-254.
doi: 10.1007/s42773-021-00099-x |
[30] |
Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota — A review[J]. Soil Biol Biochem, 2011, 43(9): 1812-1836.
doi: 10.1016/j.soilbio.2011.04.022 URL |
[31] |
Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biol Biochem, 2017, 110: 56-67.
doi: 10.1016/j.soilbio.2017.03.005 URL |
[32] |
Arafat Y, Tayyab M, Khan MU, et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards[J]. Agronomy, 2019, 9(8): 466.
doi: 10.3390/agronomy9080466 URL |
[33] |
Shen Z, Ryan Penton C, Lv N, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microb Ecol, 2018, 75(3): 739-750.
doi: 10.1007/s00248-017-1052-5 URL |
[34] |
Wang C, Chen D, Shen J, et al. Biochar alters soil microbial communities and potential functions 3-4 years after amendment in a double rice cropping system[J]. Agric Ecosyst Environ, 2021, 311: 107291.
doi: 10.1016/j.agee.2020.107291 URL |
[35] | 王科, 刘芳, 蔡磊. 中国农业植物病原菌物常见种属名录[J]. 菌物学报, 2022, 41(3): 361-386. |
Wang K, Liu F, Cai L. A Name list of common agricultural phytopathogenic fungi in China[J]. Mycosystema, 2022, 41(3): 361-386. | |
[36] | Shen RQ, Zhang P, Guo CJ, et al. Study on fungi belonging to Fusarium link in Ningxia Hui autonomous region[J]. Plant Dis Pests, 2012, 3(2): 6-8. |
[37] |
Zheng YK, Miao CP, Chen HH, et al. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease[J]. J Ginseng Res, 2017, 41(3): 353-360.
doi: 10.1016/j.jgr.2016.07.005 URL |
[38] |
Ren T, Gao W, Xu C, et al. Novel approaches of regulating soil micro-ecological environment based on modified biochar in plastic greenhouse[J]. Environ Technol Innov, 2021, 23: 101740.
doi: 10.1016/j.eti.2021.101740 URL |
[39] |
Li T, Choi K, Jung B, et al. Biochar inhibits ginseng root rot pathogens and increases soil microbiome diversity[J]. Appl Soil Ecol, 2022, 169: 104229.
doi: 10.1016/j.apsoil.2021.104229 URL |
[40] | Liu C, Xia R, Tang M, et al. Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China[J]. Hortic Res, 2022, 9: uhac108. |
[41] |
Ou XH, Cui XM, Zhu DW, et al. Cultivation mode of Panax notoginseng causes NH4+ accumulation in planting soil[J]. Arch Agron Soil Sci, 2021, 67(7): 960-973.
doi: 10.1080/03650340.2020.1771314 URL |
[42] | Graber ER and Elad Y. Biochar impact on plant resistance to disease[M]// Biochar and Soil Biota. Boca Raton: CRC Press, 2013: 49-76. |
[43] |
Jeffery S, Verheijen FGA, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agric Ecosyst Environ, 2011, 144(1): 175-187.
doi: 10.1016/j.agee.2011.08.015 URL |
[44] |
Jeffery S, Abalos D, Prodana M, et al. Biochar boosts tropical but not temperate crop yields[J]. Environ Res Lett, 2017, 12(5): 053001.
doi: 10.1088/1748-9326/aa67bd URL |
[45] |
Liu L, Huang X, Zhang J, et al. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities[J]. Soil Biol Biochem, 2020, 148: 107909.
doi: 10.1016/j.soilbio.2020.107909 URL |
[46] |
Tian GL, Bi YM, Jiao XL, et al. Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng[J]. Appl Microbiol Biotechnol, 2021, 105(18): 6977-6991.
doi: 10.1007/s00253-021-11464-y |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[3] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[4] | LI Ji-hong, JING Yu-ling, MA Gui-zhen, GUO Rong-jun, LI Shi-dong. Genome Construction of Achromobacter 77 and Its Characteristics on Chemotaxis and Antibiotic Resistance [J]. Biotechnology Bulletin, 2022, 38(9): 136-146. |
[5] | ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2022, 38(7): 215-223. |
[6] | LEI Jun, CHEN Qin, DENG Bing, ZHANG Jin-yu, LIU Di-qiu, CUI Xiu-ming, GE Feng. Biosynthesis of Panax notoginseng Saponins Regulated by R2R3-MYB Transcription Factor PnMYB1 [J]. Biotechnology Bulletin, 2022, 38(5): 74-83. |
[7] | ZHAO Zeng-qiang, GUO Wen-ting, ZHANG Xi, LI Xiao-ling, ZHANG Wei. Cloning and Functional Analysis of GhERF5-4D Gene Related to Fusarium oxysporum Resistance in Cotton [J]. Biotechnology Bulletin, 2022, 38(4): 193-201. |
[8] | YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms [J]. Biotechnology Bulletin, 2022, 38(3): 213-225. |
[9] | LIU Tian-hai, YANG Shu-qin, LIU Fu-peng, MIAO Ren-yun, YU Yang, WU Xiang, TANG Jie, WANG Yong, PENG Wei-hong, TAN Hao. Effects of Organic Fertilizers Fermented with Wheat Straw and Chicken Manure on the Continuous Cultivation of Morchella sextelata [J]. Biotechnology Bulletin, 2022, 38(12): 263-273. |
[10] | YUAN Yuan, HUANG Hai-chen, LI Lin, LIU Guo-hui, FU Jun-sheng, WU Xiao-ping. Effect of Lime on Preventing and Controlling Continuous Cropping Obstacle of Ganoderma lingzhi and Analysis of Its Microbial Community [J]. Biotechnology Bulletin, 2021, 37(4): 70-84. |
[11] | Zhao Jia, Sun Yi, Liang Hong, Huang Jing, Du Jianzhong . The Application of Modern Biotechnology in the Research of Rhizosphere Microbial Community [J]. Biotechnology Bulletin, 2012, 0(12): 65-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||