Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (7): 206-218.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1446
Previous Articles Next Articles
XIE Tian-peng1(), ZHANG Jia-ning1, DONG Yong-jun2, ZHANG Jian1, JING Ming1
Received:
2022-11-23
Online:
2023-07-26
Published:
2023-08-17
Contact:
XIE Tian-peng
E-mail:xietianpeng@163.com
XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis[J]. Biotechnology Bulletin, 2023, 39(7): 206-218.
理化性质 Physico-chemical properties | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
pH | 7.86±0.26a | 7.75±0.08a |
有机质 Organic matter /(g·kg-1) | 2.93±1.48a | 3.62±2.05a |
盐分Salinity /(mg·kg-1) | 7.44±0.18a | 7.66±0.30a |
全氮 Total nitrogen /(g·kg-1) | 1.73±0.01a | 1.73±0.01a |
硝态氮 Nitrate nitrogen /(mg·kg-1) | 53.17±9.33a | 42.36±6.19b |
氨态氮 Ammonia nitrogen /(mg·kg-1) | 25.75±5.39a | 21.76±3.54a |
全磷 Total P /(g·kg-1) | 3.50±0.01a | 3.50±0.01a |
有效磷 Available P /(mg·kg-1) | 39.17±5.62a | 44.06±5.47a |
全钾 Total K /(g·kg-1) | 3.64±0.03a | 3.64±0.01a |
有效钾 Available K /(mg·kg-1) | 165.58±27.97a | 171.65±34.34a |
Table 1 Physico-chemical properties of the rhizosphere soils of bolting and unbolting Angelica sinensis
理化性质 Physico-chemical properties | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
pH | 7.86±0.26a | 7.75±0.08a |
有机质 Organic matter /(g·kg-1) | 2.93±1.48a | 3.62±2.05a |
盐分Salinity /(mg·kg-1) | 7.44±0.18a | 7.66±0.30a |
全氮 Total nitrogen /(g·kg-1) | 1.73±0.01a | 1.73±0.01a |
硝态氮 Nitrate nitrogen /(mg·kg-1) | 53.17±9.33a | 42.36±6.19b |
氨态氮 Ammonia nitrogen /(mg·kg-1) | 25.75±5.39a | 21.76±3.54a |
全磷 Total P /(g·kg-1) | 3.50±0.01a | 3.50±0.01a |
有效磷 Available P /(mg·kg-1) | 39.17±5.62a | 44.06±5.47a |
全钾 Total K /(g·kg-1) | 3.64±0.03a | 3.64±0.01a |
有效钾 Available K /(mg·kg-1) | 165.58±27.97a | 171.65±34.34a |
Alpha多样性 Alpha diversity | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
测序覆盖度 Goods coverage | 0.99±0.00a | 0.99±0.00a |
物种数 Observed species | 2597.08±377.98a | 2742.98±140.21a |
Chao1 | 3065.85±325.88a | 3209.56±128.91a |
Shannon | 8.56±0.97a | 9.09±0.18a |
Simpson | 0.98±0.01a | 0.99±0.00a |
Table 2 The alpha diversity of bacterial communities in rh-izosphere soil of bolting and unbolting A. sinensis
Alpha多样性 Alpha diversity | 抽薹当归 Bolting | 未抽薹当归 Unbolting |
---|---|---|
测序覆盖度 Goods coverage | 0.99±0.00a | 0.99±0.00a |
物种数 Observed species | 2597.08±377.98a | 2742.98±140.21a |
Chao1 | 3065.85±325.88a | 3209.56±128.91a |
Shannon | 8.56±0.97a | 9.09±0.18a |
Simpson | 0.98±0.01a | 0.99±0.00a |
门 Phylum | 相对丰度 Relative abundance/% | 属 Genus | 相对丰度 Relative abundance/% | |||
---|---|---|---|---|---|---|
抽薹当归Bolting | 未抽薹当归Unbolting | 抽薹当归Bolting | 未抽薹当归Unbolting | |||
变形菌门Proteobacteria | 51.55±9.19a | 50.91±5.98a | 鞘氨醇单胞菌属Sphingomonas | 5.74±1.42a | 6.04±1.47a | |
放线菌门Actinobacteriota | 23.19±8.54a | 221.26±5.02a | 链霉菌属Streptomyces | 6.96±5.07a | 3.83±2.51a | |
拟杆菌门Bacteroidota | 12.00±2.38a | 12.07±0.69a | 假黄单胞菌属Pseudoxanthomonas | 3.74±4.75a | 1.83±0.52a | |
芽单胞菌门Gemmatimonadota | 5.65±2.58a | 6.50±2.12a | 原小单孢菌属Promicromonospora | 1.62±0.81a | 2.09±1.51a | |
厚壁菌门Firmicutes | 2.59±1.20a | 2.98±1.04a | MND1 | 1.63±0.77a | 1.58±0.87a | |
黏球菌门Myxococcota | 2.20±0.48a | 3.02±0.92a | 溶杆菌属Lysobacter | 1.58±0.73a | 1.54±0.26a | |
酸杆菌门Acidobacteriota | 0.98±0.65a | 1.11±0.46a | Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium | 2.00±3.26a | 1.07±0.70a | |
绿弯菌门Chloroflexi | 0.37±0.17a | 0.33±0.09a | Muribaculaceae | 1.32±0.57a | 1.69±0.58a | |
硝化螺旋菌门Nitrospirota | 0.23±0.24a | 0.37±0.32a | Nocardioides | 1.51±0.69a | 1.45±0.58a | |
蛭弧菌门Bdellovibrionota | 0.25±0.13a | 0.33±0.12a | Ellin6067 | 1.36±0.64a | 1.41±0.49a | |
疣微菌门Verrucomicrobiota | 0.21±0.10a | 0.20±0.09a | 大肠杆菌志贺菌属Escherichia-Shigella | 1.17±0.45a | 1.39±0.60a | |
脱硫菌门Desulfobacterota | 0.15±0.06a | 0.18±0.09a | 纤维弧菌属Cellvibrio | 2.22±4.62a | 0.29±0.15a | |
髌骨菌门Patescibacteria | 0.08±0.05a | 0.09±0.05a | 假单胞菌属Pseudomonas | 1.42±0.89a | 0.98±0.65a | |
弯曲杆菌门Campilobacterota | 0.06±0.02a | 0.07±0.03a | Sphingopyxis | 1.46±1.45a | 0.91±0.51a | |
迷踪菌门Elusimicrobiota | 0.07±0.04a | 0.06±0.04a | 0319-7L14 | 1.16±0.49a | 1.20±0.32a | |
其他Others | 0.41±0.16a | 0.54±0.14a | 其他Others | 65.10±9.97a | 72.71±3.83a |
Table 3 Composition of bacterial communities in the rhizosphere soil of bolting and unbolting A. sinensis at phylum and genus level
门 Phylum | 相对丰度 Relative abundance/% | 属 Genus | 相对丰度 Relative abundance/% | |||
---|---|---|---|---|---|---|
抽薹当归Bolting | 未抽薹当归Unbolting | 抽薹当归Bolting | 未抽薹当归Unbolting | |||
变形菌门Proteobacteria | 51.55±9.19a | 50.91±5.98a | 鞘氨醇单胞菌属Sphingomonas | 5.74±1.42a | 6.04±1.47a | |
放线菌门Actinobacteriota | 23.19±8.54a | 221.26±5.02a | 链霉菌属Streptomyces | 6.96±5.07a | 3.83±2.51a | |
拟杆菌门Bacteroidota | 12.00±2.38a | 12.07±0.69a | 假黄单胞菌属Pseudoxanthomonas | 3.74±4.75a | 1.83±0.52a | |
芽单胞菌门Gemmatimonadota | 5.65±2.58a | 6.50±2.12a | 原小单孢菌属Promicromonospora | 1.62±0.81a | 2.09±1.51a | |
厚壁菌门Firmicutes | 2.59±1.20a | 2.98±1.04a | MND1 | 1.63±0.77a | 1.58±0.87a | |
黏球菌门Myxococcota | 2.20±0.48a | 3.02±0.92a | 溶杆菌属Lysobacter | 1.58±0.73a | 1.54±0.26a | |
酸杆菌门Acidobacteriota | 0.98±0.65a | 1.11±0.46a | Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium | 2.00±3.26a | 1.07±0.70a | |
绿弯菌门Chloroflexi | 0.37±0.17a | 0.33±0.09a | Muribaculaceae | 1.32±0.57a | 1.69±0.58a | |
硝化螺旋菌门Nitrospirota | 0.23±0.24a | 0.37±0.32a | Nocardioides | 1.51±0.69a | 1.45±0.58a | |
蛭弧菌门Bdellovibrionota | 0.25±0.13a | 0.33±0.12a | Ellin6067 | 1.36±0.64a | 1.41±0.49a | |
疣微菌门Verrucomicrobiota | 0.21±0.10a | 0.20±0.09a | 大肠杆菌志贺菌属Escherichia-Shigella | 1.17±0.45a | 1.39±0.60a | |
脱硫菌门Desulfobacterota | 0.15±0.06a | 0.18±0.09a | 纤维弧菌属Cellvibrio | 2.22±4.62a | 0.29±0.15a | |
髌骨菌门Patescibacteria | 0.08±0.05a | 0.09±0.05a | 假单胞菌属Pseudomonas | 1.42±0.89a | 0.98±0.65a | |
弯曲杆菌门Campilobacterota | 0.06±0.02a | 0.07±0.03a | Sphingopyxis | 1.46±1.45a | 0.91±0.51a | |
迷踪菌门Elusimicrobiota | 0.07±0.04a | 0.06±0.04a | 0319-7L14 | 1.16±0.49a | 1.20±0.32a | |
其他Others | 0.41±0.16a | 0.54±0.14a | 其他Others | 65.10±9.97a | 72.71±3.83a |
Fig. 2 Responses of the bacterial communities from phyla to genera in the rhizosphere soils of bolting(BO)and unbolting(UB)A. sinensis Red circles indicate taxa that are significantly abundant in bolting rhizosphere soils, while green circles indicate taxa that are significantly abundant in unbolting rhizosphere soil. Only taxa meeting a linear discriminant analysis significance threshold of N3.0 are shown and color-coded
Fig. 3 Metabolite type distribution(A)and the principal component analysis plots(B)of the rhizosphere soils metabolites of bolting(BO)and unbolting(UB)A. sinensis Metabolites type 1: Organic acids and derivatives; 2: organic oxygen compounds; 3: lipids and lipid-like molecules; 4: benzenoids; 5: organoheterocyclic compounds;6: phenylpropanoids and polyketides; 7: nucleosides, nucleotides, and analogues; 8: organic nitrogen compounds; 9: homogeneous non-metal compounds; 10: others
Fig. 4 Changes of metabolites in the rhizosphere soils between bolting(BO)and unbolting(UB)A. sinensis A: Volcano plot of differentially metabolites in BO vs UB. B: Changes of different metabolites in BO vs UB(Metabolites type 1: organic acids and derivatives; 2: organic oxygen compounds; 3: lipids and lipid-like molecules; 4: benzenoids; 5: organoheterocyclic compounds; 6: phenylpropanoids and polyketides; 7: organic nitrogen compounds;8: others). C: Heat map of 66 differential metabolites between BO and UB. D: Bubble diagram of metabolic pathways that are significantly different in the rhizosphere soils in BO vs UB A. sinensis
Fig. 5 RDA analysis of soil properties and different bacterial genus(A), soil properties and different metabolites(B), different bacterial genus and metabolites(C)between bolting(BO)and unbolting(UB)A. sinensis
代谢通路 Metabolic pathway | 差异代谢物 Different metabolites | 表达量 Expression amount | Phaselicystis | Rubellimicrobium | 硝态氮 Nitrate nitrogen |
---|---|---|---|---|---|
氨基苯甲酸酯降解 Aminobenzoate degradation | 没食子酸Gallic acid | 上调 | -0.851*** | -0.741** | 0.234 |
1,2,3-三羟基苯1,2,3-trihydroxybenzene | 上调 | -0.702* | -0.503 | 0.055 | |
氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 | |
4-硝基苯酚4-nitrophenol | 上调 | -0.691* | -0.662* | 0.517 | |
1,2,4-苯三醇1,2,4-benzenetriol | 上调 | -0.735** | -0.574 | 0.010 | |
4-氨基苯酚4-aminophenol | 上调 | -0.751** | -0.567 | 0.385 | |
丁香酸Syringic acid | 下调 | 0.414 | 0.167 | -0.267 | |
苯丙氨酸代谢 Phenylalanine metabolism | 氢化肉桂酸Hydrocinnamic acid | 上调 | -0.789** | -0.556 | -0.021 |
苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.654* | -0.572 | 0.292 | |
马嘌呤酸Hippuric acid | 上调 | -0.534 | -0.790** | 0.404 | |
苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine, tyrosine and tryptophan biosynthesis | 莽草酸Shikimic acid | 下调 | 0.340 | 0.775** | -0.223 |
奎宁酸Quinic acid | 上调 | -0.771** | -0.529 | -0.056 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
不饱和脂肪酸的生物合成 Biosynthesis of unsaturated fatty acids | 四糖酸Tetracosanoic acid | 下调 | 0.585* | 0.362 | -0.470 |
苯甲酸Behenic acid | 下调 | 0.568 | 0.355 | -0.587* | |
花生酸Arachidic acid | 下调 | 0.462 | 0.317 | -0.572* | |
苯乙烯降解 Styrene degradation | 苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572 | 0.292 | |
酪氨酸代谢 Tyrosine metabolism | 氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572* | 0.292 | |
精氨酸和脯氨酸代谢 Arginine and proline metabolism | 吡咯-2-羧酸Pyrrole-2-carboxylic acid | 上调 | -0.820** | -0.737** | 0.083 |
肌酐Creatinine | 上调 | -0.830*** | -0.741** | 0.238 | |
反式-4-羟基-1-脯氨酸Trans-4-hydroxy-l-proline | 上调 | -0.718** | -0.840*** | 0.285 |
Table 4 Correlation between differential metabolites in main metabolic pathways and Phaselicystis, Rubellimicrobium and nitrate nitrogen
代谢通路 Metabolic pathway | 差异代谢物 Different metabolites | 表达量 Expression amount | Phaselicystis | Rubellimicrobium | 硝态氮 Nitrate nitrogen |
---|---|---|---|---|---|
氨基苯甲酸酯降解 Aminobenzoate degradation | 没食子酸Gallic acid | 上调 | -0.851*** | -0.741** | 0.234 |
1,2,3-三羟基苯1,2,3-trihydroxybenzene | 上调 | -0.702* | -0.503 | 0.055 | |
氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 | |
4-硝基苯酚4-nitrophenol | 上调 | -0.691* | -0.662* | 0.517 | |
1,2,4-苯三醇1,2,4-benzenetriol | 上调 | -0.735** | -0.574 | 0.010 | |
4-氨基苯酚4-aminophenol | 上调 | -0.751** | -0.567 | 0.385 | |
丁香酸Syringic acid | 下调 | 0.414 | 0.167 | -0.267 | |
苯丙氨酸代谢 Phenylalanine metabolism | 氢化肉桂酸Hydrocinnamic acid | 上调 | -0.789** | -0.556 | -0.021 |
苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.654* | -0.572 | 0.292 | |
马嘌呤酸Hippuric acid | 上调 | -0.534 | -0.790** | 0.404 | |
苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine, tyrosine and tryptophan biosynthesis | 莽草酸Shikimic acid | 下调 | 0.340 | 0.775** | -0.223 |
奎宁酸Quinic acid | 上调 | -0.771** | -0.529 | -0.056 | |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
不饱和脂肪酸的生物合成 Biosynthesis of unsaturated fatty acids | 四糖酸Tetracosanoic acid | 下调 | 0.585* | 0.362 | -0.470 |
苯甲酸Behenic acid | 下调 | 0.568 | 0.355 | -0.587* | |
花生酸Arachidic acid | 下调 | 0.462 | 0.317 | -0.572* | |
苯乙烯降解 Styrene degradation | 苯乙酸Phenylacetic acid | 下调 | 0.451 | 0.328 | -0.438 |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572 | 0.292 | |
酪氨酸代谢 Tyrosine metabolism | 氢醌Hydroquinone | 上调 | -0.707* | -0.485 | 0.022 |
苯基丙酸甲酯Benzenepropanoic acid | 下调 | 0.457 | 0.342 | -0.424 | |
3-羟基苯乙酸3-hydroxyphenylacetic acid | 上调 | -0.653* | -0.572* | 0.292 | |
精氨酸和脯氨酸代谢 Arginine and proline metabolism | 吡咯-2-羧酸Pyrrole-2-carboxylic acid | 上调 | -0.820** | -0.737** | 0.083 |
肌酐Creatinine | 上调 | -0.830*** | -0.741** | 0.238 | |
反式-4-羟基-1-脯氨酸Trans-4-hydroxy-l-proline | 上调 | -0.718** | -0.840*** | 0.285 |
[1] |
Wei WL, Zeng R, Gu CM, et al. Angelica sinensis in China-a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis[J]. J Ethnopharmacol, 2016, 190: 116-141.
doi: 10.1016/j.jep.2016.05.023 URL |
[2] | 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 139. |
Committee for the Pharmacopoeia of PR China. People's republic of China(PRC)pharmacopoeia-part I: 2020 edition[M]. Beijing: Chinese Medical Science and Technology Press, 2020: 139. | |
[3] | 谢田朋, 柳娜, 王雅莉, 等. 不同产地当归品质的研究进展[J]. 中医药学报, 2020, 48(1): 72-75. |
Xie TP, Liu N, Wang YL, et al. Quality research progress of Angelica sinensis from different regions[J]. Acta Chin Med Pharmacol, 2020, 48(1): 72-75. | |
[4] | 顾志荣, 师富贵, 王永琦, 等. 不同产地当归药材质量研究进展[J]. 甘肃中医学院学报, 2014, 31(5): 80-83. |
Gu ZR, Shi FG, Wang YQ, et al. Research progress on quality of Angelica sinensis from different habitats[J]. J Gansu Coll Tradit Chin Med, 2014, 31(5): 80-83. | |
[5] | 冯慧敏, 李玥, 罗旭东, 等. 当归化学成分和药理作用研究进展及质量标志物的预测分析[J]. 中华中医药学刊, 2022, 40(4): 159-166. |
Feng HM, Li Y, Luo XD, et al. Research progress on chemical constituents and pharmacological effects of Danggui(Radix Angelica sinensis)and prediction analysis on its quality markers[J]. Chin Arch Tradit Chin Med, 2022, 40(4): 159-166. | |
[6] | Wang LY, Tang YP, Liu X, et al. Effects of ferulic acid on antioxidant activity in Angelica sinensis Radix, Chuanxiong Rhizoma, and their combination[J]. Chin J Nat Med, 2015, 13(6): 401-408. |
[7] |
Zhou WJ, Wang S, Hu Z, et al. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation[J]. Biochem Biophys Res Commun, 2015, 467(3): 562-569.
doi: 10.1016/j.bbrc.2015.09.145 URL |
[8] | 晋玲. 当归生产加工适宜技术[M]. 北京: 中国医药科技出版社, 2018: 1-14. |
Jin L. Suitable technology for production and processing of Angelica sinensis[M]. Beijing: China Pharmaceutical Science and Technology Press, 2018: 1-14. | |
[9] |
王文丽, 李娟, 赵旭. 生物有机肥对连作当归根际土壤细菌群落结构和根腐病的影响[J]. 应用生态学报, 2019, 30(8): 2813-2821.
doi: 10.13287/j.1001-9332.201908.030 |
Wang WL, Li J, Zhao X. Effects of biological organic fertilizer on rhisosphere soil bacteria community and root rot diseases of continuous cropping Angelica sinensis[J]. Chin J Appl Ecol, 2019, 30(8): 2813-2821. | |
[10] |
谢田朋, 柳娜, 刘越敏, 等. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0467 |
Xie TP, Liu N, Liu YM, et al. Effects of chemical fertilizer reduction and application of plant growth regulators from traditional Chinese medicine on the quality and its bacterial community in rhizosphere soil of Angelica sinensis[J]. Biotechnol Bull, 2022, 38(3): 79-91. | |
[11] | 栗孟飞, 康天兰, 晋玲, 等. 当归抽薹开花及其调控途径研究进展[J]. 中草药, 2020, 51(22): 5894-5899. |
Li MF, Kang TL, Jin L, et al. Research progress on bolting and flowering of Angelica sinensis and regulation pathways[J]. Chin Tradit Herb Drugs, 2020, 51(22): 5894-5899. | |
[12] |
Liu XX, Luo MM, Li MF, et al. Depicting precise temperature and duration of vernalization and inhibiting early bolting and flowering of Angelica sinensis by freezing storage[J]. Front Plant Sci, 2022, 13: 853444.
doi: 10.3389/fpls.2022.853444 URL |
[13] |
邱黛玉, 蔺海明, 陈垣, 等. 经纬度和海拔对当归成药期植株长势和早期抽薹的影响[J]. 草地学报, 2010, 18(6): 838-843.
doi: 10.11733/j.issn.1007-0435.2010.06.016 |
Qiu DY, Lin HM, Chen Y, et al. Effects of latitude, longitude and altitude on Angelica growth and early bolting in medicine formation period[J]. Acta Agrestia Sin, 2010, 18(6): 838-843. | |
[14] | 邱黛玉, 蔺海明, 方子森, 等. 种苗大小对当归成药期早期抽薹和生理变化的影响[J]. 草业学报, 2010, 19(6): 100-105. |
Qiu DY, Lin HM, Fang ZS, et al. Effects of seedlings with different root diameters on Angelica sinensis early bolting and physiological changes during the medicine formation period[J]. Acta Prataculturae Sin, 2010, 19(6): 100-105. | |
[15] | 武延安, 刘效瑞, 曹占凤, 等. 日光温室冬季育苗抑制当归早期抽薹的效应研究[J]. 中国中药杂志, 2010, 35(3): 283-287. |
Wu YA, Liu XR, Cao ZF, et al. Inhibition of winter seedling raising in green house of premature bolting in Angelica sinensis[J]. China J Chin Mater Med, 2010, 35(3): 283-287. | |
[16] | 谢田朋, 张建, 柳娜, 等. 当归不同生长时期根际土壤酶活性及微生物群落结构变化[J]. 土壤通报, 2023, 54(1):138-150. |
Xie TP, Zhang J, Liu N, et al. Changes in rhizosphere soil enzymatic activities and microbial communities across growth stages of Angelica sinensis[J]. Chin J Soil Sci, 2023, 54(1):138-150. | |
[17] |
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions[J]. Ann Microbiol, 2019, 69(4): 307-320.
doi: 10.1007/s13213-019-01448-9 |
[18] |
Lu T, Ke MJ, Lavoie M, et al. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome, 2018, 6(1): 231.
doi: 10.1186/s40168-018-0615-0 pmid: 30587246 |
[19] |
Singh BK, Bardgett RD, Smith P, et al. Microorganisms and climate change: terrestrial feedbacks and mitigation options[J]. Nat Rev Microbiol, 2010, 8(11): 779-790.
doi: 10.1038/nrmicro2439 pmid: 20948551 |
[20] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu RK. Methods of soil agrochemical analysis[M]. Beijing: China Agriculture Scientech Press, 2000. | |
[21] | 巩晓芳, 祝英, 彭轶楠, 等. 当归不同生长时期根际丛枝真菌分布及土壤养分和酶活性的动态变化[J]. 微生物学通报, 2017, 44(11): 2596-2605. |
Gong XF, Zhu Y, Peng YN, et al. Dynamics of arbuscular mycorrhizal fungi distributions, soil nutrients and enzyme activities in rhizosphere soil at different growth stages of Angelica sinensis[J]. Microbiol China, 2017, 44(11): 2596-2605. | |
[22] |
张宵娟, 邓光华, 喻苏琴, 等. 氮对千日红试管苗生长和开花诱导的影响[J]. 草业学报, 2015, 24(1): 56-63.
doi: 10.11686/cyxb20150108 |
Zhang XJ, Deng GH, Yu SQ, et al. Effects of nitrogen on growth and flowering of test-tube plantlets of Gomphrena globosa[J]. Acta Prataculturae Sin, 2015, 24(1): 56-63. | |
[23] |
Gao YY, Qi SD, Wang Y. Nitrate signaling and use efficiency in crops[J]. Plant Commun, 2022, 3(5): 100353.
doi: 10.1016/j.xplc.2022.100353 URL |
[24] |
Fan K, Fan DM, Su Y, et al. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant(Camellia sinensis L.)[J]. Plant Physiol Biochem, 2015, 97: 350-360.
doi: 10.1016/j.plaphy.2015.10.026 URL |
[25] |
Bao YY, Dolfing J, Guo ZY, et al. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils[J]. Microbiome, 2021, 9(1): 84.
doi: 10.1186/s40168-021-01032-x pmid: 33827695 |
[26] | Peng JJ, Oladele O, Song XT, et al. Opportunities and approaches for manipulating soil-plant microbiomes for effective crop nitrogen use in agroecosystems[J]. Front Agr Sci Eng, 2022, 9(3): 333-343. |
[27] | 蔡雨衡, 向斯, 程凯. 氨氮对3种吸附态亚硝化单胞菌的抑制动力学[J]. 微生物学通报, 2021, 48(11): 3996-4005. |
Cai YH, Xiang S, Cheng K. The NH3-N inhibition kinetics of 3 Nitrosomonas at adhesive status[J]. Microbiol China, 2021, 48(11): 3996-4005. | |
[28] |
Cheng N, Peng YJ, Kong YL, et al. Combined effects of biochar addition and nitrogen fertilizer reduction on the rhizosphere metabolomics of maize(Zea mays L.) seedlings[J]. Plant Soil, 2018, 433(1): 19-35.
doi: 10.1007/s11104-018-3811-6 |
[29] |
Song Y, Li X, Yao S, et al. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation[J]. Sci Total Environ, 2020, 728: 138439.
doi: 10.1016/j.scitotenv.2020.138439 URL |
[30] |
Pang ZQ, Chen J, Wang TH, et al. Linking plant secondary metabolites and plant microbiomes: a review[J]. Front Plant Sci, 2021, 12: 621276.
doi: 10.3389/fpls.2021.621276 URL |
[31] | Garcia R, Müller R. The family phaselicystidaceae[M]// Rosenberg E, DeLong EF, Lory S, et al. The Prokaryotes. Berlin: The Springer-Verlag Press, 2014: 239-245. |
[32] | 赵文慧, 马垒, 徐基胜, 等. 秸秆与木本泥炭短期施用对潮土有机质及微生物群落组成和功能的影响[J]. 土壤学报, 2020, 57(1): 153-164. |
Zhao WH, Ma L, Xu JS, et al. Effect of application of straw and wood peat for a short period on soil organic matter and microbial community in composition and function in fluvo-aquic soil[J]. Acta Pedol Sin, 2020, 57(1): 153-164. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[3] | ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’ [J]. Biotechnology Bulletin, 2023, 39(3): 184-195. |
[4] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[5] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[6] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[7] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[8] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[9] | XIE Tian-peng, LIU Na, LIU Yue-min, QU Xin, BO Shuang-qin, JING Ming. Effects of Chemical Fertilizer Reduction and Application of Plant Growth Regulators from Traditional Chinese Medicine on the Quality and Its Bacterial Community in Rhizosphere Soil [J]. Biotechnology Bulletin, 2022, 38(3): 79-91. |
[10] | YANG Yu-ping, ZHANG Xia, WANG Chong-chong, WANG Xiao-yan. Study on Urine Metabolomics in Rats of Different Ages [J]. Biotechnology Bulletin, 2022, 38(2): 166-172. |
[11] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[12] | LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling [J]. Biotechnology Bulletin, 2022, 38(11): 58-69. |
[13] | LIU Chuan-he, HE Han, HE Xiu-gu, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Analysis of Differential Metabolites and Bacterial Community Structure in Soils of a Pineapple Orchard in Different Continuous-cropping Years [J]. Biotechnology Bulletin, 2021, 37(8): 162-175. |
[14] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[15] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||