Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 202-212.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0278
Previous Articles Next Articles
YANG Zhi-xiao1(), HOU Qian2, LIU Guo-quan3, LU Zhi-gang3, CAO Yi1, GOU Jian-yu4, WANG Yi1, LIN Ying-chao1()
Received:
2023-03-26
Online:
2023-09-26
Published:
2023-10-24
Contact:
LIN Ying-chao
E-mail:linyingxian2006@126.com;lin.yingchao@qq.com
YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress[J]. Biotechnology Bulletin, 2023, 39(9): 202-212.
基因 Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
rbcL | TTACAAAGGGCGATGCTACC | GAACCCAAATACGTTACCTACAATG |
RbcS | GCTTCCTCTGTTCTTTCCTCTG | GCAATGGAAGTGATGTCAAGG |
Rca | AGCAGCAGAAATCATCAG | ATTGTCCAGGGAAGGTAT |
Actin | CCTGAGGTCCTTTTCCAACCA | GGATTCCGGCAGCTTCCATT |
Table 1 Primers for real-time quantitative RCR
基因 Gene | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
rbcL | TTACAAAGGGCGATGCTACC | GAACCCAAATACGTTACCTACAATG |
RbcS | GCTTCCTCTGTTCTTTCCTCTG | GCAATGGAAGTGATGTCAAGG |
Rca | AGCAGCAGAAATCATCAG | ATTGTCCAGGGAAGGTAT |
Actin | CCTGAGGTCCTTTTCCAACCA | GGATTCCGGCAGCTTCCATT |
Fig. 1 Effects of brown spot stress on photosynthetic parameters in different resistant tobacco cultivars JYH-T and CBH-T: Inoculated with tobacco brown spot of JYH and CBH. JYH-CK and CBH-CK: Non-inoculated with tobacco brown spot of JYH and CBH. Different letters indicate significant differences(P<0.05). The same below
指标 Index | Pn | rbcL 相对表达量 rbcL relative expression | rbcS相对表达量 rbcS relative expression | rca相对表达量 rca relative expression | rbcL含量 Content of rbcL | rbcS含量 Content of rbcS | rca含量 Content of rca | Rubisco活化状态 Activation state of Rubisco | Rubisco 初始活性 Initial activity of Rubisco | Rubisco总活性 Total activity of Rubisco |
---|---|---|---|---|---|---|---|---|---|---|
rbcL相对表达量 rbcL relative expression | 0.996** | |||||||||
rbcS相对表达量 rbcS relative expression | 0.989** | 0.427 | ||||||||
rca相对表达量 rca relative expression | 0.991** | 0.193 | 0.704 | |||||||
rbcL含量 Content of rbcL | 0.375 | 0.743 | 0.588 | 0.611 | ||||||
rbcS含量 Content of rbcS | 0.442 | 0.347 | -0.623 | -0.194 | 0.927* | |||||
rca含量 Content of rca | 0.296 | 0.204 | 0.037 | 0.974** | 0.492 | 0.613 | ||||
Rubisco活化状态 Activation state of Rubisco | 0.926* | 0.938* | 0.198 | 0.427 | 0.128 | 0.327 | 0.979** | |||
Rubisco初始活性 Initial activity of Rubisco | 0.917* | 0.962* | 0.529 | 0.947* | -0.384 | 0.535 | 0.993** | 0.584 | ||
Rubisco总活性 Total activity of Rubisco | 0.943* | 0.987** | -0.394 | 0.919* | 0.456 | 0.136 | 0.982** | 0.371 | 0.603 | |
RCA活性 Activity of RCA | 0.932* | 0.449 | 0.438 | 0.996** | 0.295 | 0.477 | 0.438 | 0.149 | 0.582 | 0.497 |
Table 2 Correlation analysis between net photosynthetic rate and gene expression characteristics of Rubisco and RCA in different resistant tobacco cultivars under brown spot stress
指标 Index | Pn | rbcL 相对表达量 rbcL relative expression | rbcS相对表达量 rbcS relative expression | rca相对表达量 rca relative expression | rbcL含量 Content of rbcL | rbcS含量 Content of rbcS | rca含量 Content of rca | Rubisco活化状态 Activation state of Rubisco | Rubisco 初始活性 Initial activity of Rubisco | Rubisco总活性 Total activity of Rubisco |
---|---|---|---|---|---|---|---|---|---|---|
rbcL相对表达量 rbcL relative expression | 0.996** | |||||||||
rbcS相对表达量 rbcS relative expression | 0.989** | 0.427 | ||||||||
rca相对表达量 rca relative expression | 0.991** | 0.193 | 0.704 | |||||||
rbcL含量 Content of rbcL | 0.375 | 0.743 | 0.588 | 0.611 | ||||||
rbcS含量 Content of rbcS | 0.442 | 0.347 | -0.623 | -0.194 | 0.927* | |||||
rca含量 Content of rca | 0.296 | 0.204 | 0.037 | 0.974** | 0.492 | 0.613 | ||||
Rubisco活化状态 Activation state of Rubisco | 0.926* | 0.938* | 0.198 | 0.427 | 0.128 | 0.327 | 0.979** | |||
Rubisco初始活性 Initial activity of Rubisco | 0.917* | 0.962* | 0.529 | 0.947* | -0.384 | 0.535 | 0.993** | 0.584 | ||
Rubisco总活性 Total activity of Rubisco | 0.943* | 0.987** | -0.394 | 0.919* | 0.456 | 0.136 | 0.982** | 0.371 | 0.603 | |
RCA活性 Activity of RCA | 0.932* | 0.449 | 0.438 | 0.996** | 0.295 | 0.477 | 0.438 | 0.149 | 0.582 | 0.497 |
[1] |
童治军, 张谊寒, 陈学军, 等. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
doi: 10.3724/SP.J.1006.2019.84035 |
Tong ZJ, Zhang HY, Chen XJ, et al. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1[J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
doi: 10.3724/SP.J.1006.2019.84035 URL |
|
[2] | Shew HD. Compendium of tobacco diseases[M]. Minnesota: Amer Phytopathological Society, 1991. |
[3] |
Feng ZH, Li YX, Ma XY, et al. Draft genome sequence of Alternaria longipes causing tobacco brown spot[J]. Plant Dis, 2022, 106(2): 734-736.
doi: 10.1094/PDIS-06-21-1274-A URL |
[4] |
Nowicka B, Ciura J, Szymańska R, et al. Improving photosynthesis, plant productivity and abiotic stress tolerance-current trends and future perspectives[J]. J Plant Physiol, 2018, 231: 415-433.
doi: 10.1016/j.jplph.2018.10.022 URL |
[5] | 沈喜, 李红玉, 贾秋珍, 等. 条锈病对小麦(Triticum aestivum L.) 叶片光合功能及光合功能蛋白D1表达的影响[J]. 生态学报, 2008, 28(2): 669-676. |
Shen X, Li HY, Jia QZ, et al. Influence of wheat(Triticum aestivum L.) stripe rust infection on photosynthetic function and expression protein D1 of what leaves[J]. Acta Ecol Sin, 2008, 28(2): 669-676. | |
[6] | 部建雯, 姚广, 高辉远, 等. 核盘菌(Sclerotinia sclerotiorum (Lib.)de Bary)侵染抑制黄瓜光合作用的机理[J]. 植物病理学报, 2009, 39(6): 613-621. |
Bu JW, Yao G, Gao HY, et al. Inhibition mechanism of photosynthesis in cucumber leaves infected by Sclerotinia sclerotiorum(Lib.) de Bary[J]. Acta Phytopathol Sin, 2009, 39(6): 613-621. | |
[7] | Day W, Chalabi ZS. Use of models to investigate the link between the modification of photosynthetic characteristics and improved crop yields[J]. Plant Physiol Bioch, 1998, 26(4): 511-517. |
[8] |
Suzuki YJ, Makino A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice[J]. J Exp Bot, 2013, 64(4): 1145-1152.
doi: 10.1093/jxb/ers398 pmid: 23349140 |
[9] |
Sun JL, Sui XL, Wang SH, et al. The response of rbcL, rbcS and rca genes in cucumber(Cucumis sativus L.) to growth and induction light intensity[J]. Acta Physiol Plant, 2014, 36(10): 2779-2791.
doi: 10.1007/s11738-014-1648-z URL |
[10] |
Kaiser E, Morales A, Harbinson J, et al. Dynamic photosynthesis in different environmental conditions[J]. J Exp Bot, 2014, 66: 2415-2426.
doi: 10.1093/jxb/eru406 URL |
[11] |
颜坤, 赵世杰, 徐化凌, 等. 盐胁迫对不同倍性金银花光合特性的影响[J]. 中国农业科学, 2015, 48(16): 3275-3286.
doi: 10.3864/j.issn.0578-1752.2015.16.017 |
Yan K, Zhao SJ, Xu HL, et al. Effects of salt stress on photosynthetic characters in honeysuckle with different ploidies[J]. Sci Agr Sin, 2015, 48(16): 3275-3286. | |
[12] |
Martinez-Barajas E, Molina-Galan J, Sanchez De Jimenez E. Regulation of Rubisco activity during grain-fill in maize: possible role of Rubisco activase[J]. J Agr Sci, 1997, 128: 155-161.
doi: 10.1017/S002185969600408X URL |
[13] | 杜兴良, 兰盼龙, 张皓帆, 等. 一氧化氮对高温与干旱复合胁迫下小麦叶片Rca基因表达及Rubisco活性的影响[J]. 河南农业大学学报, 2018, 52(6): 868-873. |
Du XL, Lan PL, Zhang HF, et al. Regulating effect of nitric oxide on expression of Rca gene and activity of Rubisco in wheat leaves under combined stress of heat and drought[J]. J Henan Agr Univ, 2018, 52(6): 868-873. | |
[14] |
Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data?[J]. J Exp Bot, 2011, 62: 869-882.
doi: 10.1093/jxb/erq340 pmid: 21172816 |
[15] |
Goumenaki E, Taybi T, Borland A, et al. Mechanisms underlying the impacts of ozone on photosynthetic performance[J]. Environ Exp Bot, 2010, 69(3): 259-266.
doi: 10.1016/j.envexpbot.2010.04.011 URL |
[16] |
孙建磊, 王崇启, 肖守华, 等. 弱光对黄瓜幼苗光合特性及Rubisco酶的影响[J]. 核农学报, 2017, 31(6): 1200-1209.
doi: 10.11869/j.issn.100-8551.2017.06.1200 |
Sun JL, Wang CQ, Xiao SH, et al. Effect of low light on photosynthesis and Rubisco of cucumber seedlings[J]. J Nucl Agr Sci, 2017, 31(6): 1200-1209. | |
[17] |
杨青华, 郑博元, 李蕾蕾, 等. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
doi: 10.3724/SP.J.1006.2018.01393 |
Yang QH, Zheng BY, Li LL, et al. Effect of exogenous nitric oxide donor on carbon assimilation and antioxidant system in leaves of maize seedlings under PEG-induced water deficit stress[J]. Acta Agron Sinica, 2018, 44(9): 1393-1399.
doi: 10.3724/SP.J.1006.2018.01393 URL |
|
[18] | 郭鹏诚. 烟草赤星病抗性候选基因筛选及功能分析[D]. 北京: 中国农业科学院, 2021. |
Guo PC. Screening and functional analysis of resistance candidate gene to tobacco brown spot[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[19] | 杨志晓, 丁燕芳, 张小全, 等. 赤星病胁迫对不同抗性烟草品种光合作用和叶绿素荧光特性的影响[J]. 生态学报, 2015, 35(12): 4146-4154. |
Yang ZX, Ding YF, Zhang XQ, et al. Impacts of Alternaria alterna-ta stress on characteristics of photosynthesis and chlorophyll fluorescence in two tobacco cultivars with different resistances[J]. Acta Ecol Sin, 2015, 35(12): 4146-4154. | |
[20] |
Yang ZX, Yang YF, Yu SZ, et al. Photosynthetic, photochemical and osmotic regulation changes in tobacco resistant and susceptible to Alternaria alternata[J]. Trop plant pathol, 2018, 43(5): 413-421.
doi: 10.1007/s40858-018-0222-4 |
[21] | 牛俊轲, 卢宝慧, 刘丽萍, 等. 吉林省和黑龙江省烟草赤星病病原鉴定[J]. 中国烟草科学, 2019, 40(5): 52-59. |
Niu JK, Lu BH, Liu LP, et al. Identification of the pathogens causing tobacco brown spot disease in Jilin and Heilongjiang provinces[J]. Chin Tob Sci, 2019, 40(5): 52-59. | |
[22] | 王文静, 王凤龙, 焦芳蝉, 等. 基于重测序的烟草赤星病抗性关联SNP位点挖掘[J]. 分子植物育种, 2023, 21(5): 1475-1480. |
Wang WJ, Wang FL, Jiao FC, et al. Investigation on occurrence regularity and influencing factors of tobacco brown spot[J]. Mol Plant Breed, 2023, 21(5): 1475-1480. | |
[23] | 樊杰, Tom Hsiang T, 李芝义, 等. Civitas Pre-M1xed安全性评价及其对烟草赤星病的防治效果[J]. 农药学学报, 2020, 22(3): 477-482. |
Fan J, Tom Hsiang T, Li ZY, et al. Safety evaluation of Civitas Pre-M1xed and its effect on brown spot disease of tobacco[J]. Chin J Pestic Sci, 2020, 22(3): 477-482. | |
[24] | 孔德钧, 王志红, 陈丽莉, 等. 烤烟抗赤星病种质资源的筛选[J]. 广东农业科学, 2018, 45(4): 22-27. |
Kong DJ, Wang ZH, Chen LL, et al. Identification of flue-cured tobacco germplasm resources resistant to brown spot disease[J]. Guangdong Agr Sci, 2018, 45(4): 22-27. | |
[25] |
Yang ZX, Chen Y, Wang Y, et al. Nitrogen metabolic rate and differential ammonia volatilization regulate resistance against opportunistic fungus Alternaria alternata in tobacco[J]. Front Plant Sci. 2022, 13: 1003534.
doi: 10.3389/fpls.2022.1003534 URL |
[26] | 董汉松, 王智发. 烟草赤星病菌致病力测定方法的研究[J]. 山东农业大学学报, 1989, 4: 1-8. |
Dong HS, Wang ZF. Study on methods for identifying pathogenicity of tobacco brown spot pathogen[J]. J Shandong Agr Univ, 1989, 4: 1-8. | |
[27] | 易龙. 烟草赤星病菌菌种保存及致病性研究[J]. 植物保护, 2008, 34(1): 92-95. |
Yi L. Preservation of the pathogen of tobacco brown spot and its pathogenicity[J]. Plant Prot, 2008, 34(1): 92-95. | |
[28] |
Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 31(1): 491-543.
doi: 10.1146/arplant.1980.31.issue-1 URL |
[29] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CTmethod[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[30] | 马超, 张均, 宋鹏, 等. 外源海藻糖对PEG渗透胁迫下小麦Rubisco及其活化酶的影响[J]. 西北植物学报, 2019, 39(7): 1241-1249. |
Ma C, Zhang J, Song P, et al. Effect of exogenous trehalose on Rubisco and its activase in wheat under PEG osmotic stress[J]. Acta Bot Boreal-Occid Sin, 2019, 39(7): 1241-1249. | |
[31] |
Liu ZH, Dreybrodt W. Significance of the carbon sink produced by H2O-arbonate-CO2-aquatic phototroph interaction on land[J]. Sci Bull, 2015, 60(2): 182-191.
doi: 10.1007/s11434-014-0682-y URL |
[32] |
Balachandran S, Hull RJ, Martins RA, et al. Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus[J]. Plant Physiol, 1997, 114(2): 475-481.
pmid: 12223721 |
[33] | 贾士芳, 李从峰, 董树亭, 等. 弱光胁迫影响夏玉米光合效率的生理机制初探[J]. 植物生态学报, 2010, 34(12): 1496-1447. |
Jia SF, Li CF, Dong ST, et al. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize(Zea mays)[J]. Chin J Plant Ecol, 2010, 34(12): 1496-1447. | |
[34] |
Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33(1): 317-345.
doi: 10.1146/arplant.1982.33.issue-1 URL |
[35] |
邹京南, 于奇, 金喜军, 等. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
doi: 10.3724/SP.J.1006.2020.94111 |
Zou JN, Yu Q, Wang XJ, et al. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress[J]. Acta Agr Sin, 2020, 46(5): 745-758. | |
[36] | 胥华伟, 侯典云. 番茄Rubisco小亚基叶绿体转运肽的克隆及其功能验证[J]. 基因组学与应用生物学, 2018, 37(4): 1570-1575. |
Xu HW, Hou DY. Cloning and functional verification of tomato Rubisco small subunit chloroplast transit peptide[J]. Genomics Appl Biol, 2018, 37(4): 1570-1575. | |
[37] | 李卫芳, 王忠, 韩鹰, 等. 小麦Rubisco活化酶的纯化及其活性特性[J]. 中国农业科学, 2002, 35(8): 929-933. |
Li WF, Wang Z, Han Y, et al. Purification and activity characteristics of Rubisco activase from wheat leaves[J]. Sci Agr Sin, 2002, 35(8): 929-933. | |
[38] |
Portis AR. Rubisco activase-Rubisco's catalytic chaperone[J]. Photosynth Res, 2003, 75: 11-27.
doi: 10.1023/A:1022458108678 URL |
[39] | 洪健, 王卫兵, 胡东维, 等. Rubisco和RCA在青菜叶绿体中的分布及病毒侵染对其细胞定位的影响[J]. 实验生物学报, 2005, 38(1): 29-36. |
Hong J, Wang WB, Hu DW, et al. Distribution of Rubisco and Rca in Brassica Chinensis chloroplasts and effect of TuMV-infection on their cellular localization[J]. Acta Biol Exp Sin, 2005, 38(1): 29-36. | |
[40] | 朱磊, 杨景华, 张明方. 芥菜Rubisco小亚基的基因克隆及其在芜菁花叶病毒侵染后的表达分析[J]. 核农学报, 2011, 25: 945-950. |
Zhu L, Yang JH, Zhang MF. Cloning of Rubisco small subunit gene from mustard and analysis of its expression in response to Turnip mosaic virus infection[J]. J Nucl Agric Sci, 2011, 25: 945-950. | |
[41] | 杨志晓, 王轶, 谢升东, 等. 二个抗、感病烟草品种对赤星病胁迫的光合生理响应差异[J]. 植物生理学报, 2022, 58(3): 565-576. |
Yang ZX, Wang Y, Xie SD, et al. Differences of photosynthetic physiological response in two resistant and susceptible tobacco cultivars to brown spot stress[J]. Plant Physiol J, 2022, 58(3): 565-576.
doi: 10.1111/ppl.1983.58.issue-4 URL |
|
[42] | 艾希珍, 郭延奎, 马兴庄, 等. 弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J]. 中国农业科学, 2004, 37(2): 268-273. |
Ai XZ, Guo YK, Ma XZ, et al. Phytosynthetic characteristics and ultrastructure of choloroplast of cucumber under low light intensity in solargreenhouse[J]. Sci Agr Sin, 2004, 37(2): 268-273. | |
[43] | Yue HY, Yin JR, Yan SQ, et al. Cloning and sequence analysis of rbcS gene of wild barley(Hordeum brevisubulatum)under salt stress[J]. Agr Sci & Technol, 2010, 11: 42-44. |
[44] | 陈丽芳. 外源亚精胺对盐胁迫下黄瓜幼苗CO2同化代谢的影响[D]. 南京: 南京农业大学, 2011. |
Chen LF. Effects of exogenous spermidine on CO2 assimilation and metabolism of salt-stressed cucumber seedlings[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[45] |
Whitney SM, Andrews TJ. Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco)supports photosynthesis and growth in tobacco[J]. P Natl Acad Sci USA, 2001, 98(25): 14738-14743.
doi: 10.1073/pnas.261417298 URL |
[46] | 毕焕改, 李福德, 董绪兵, 等. 转酮醇酶基因沉默对高温胁迫下黄瓜幼苗光合作用的影响[J]. 植物生理学报, 2017, 53(10): 1859-1866. |
Bi HG, Li FD, Dong XB, et al. Effects of transketolase gene silencing on photosynthesis in cucumber seedlings under high temperature stress[J]. Plant Physiol J, 2017, 53(10): 1859-1866. | |
[47] |
Chen Y, Wan g XM, Zhou L, et al. Rubisco activase is also a multiple responder to abiotic stresses in rice[J]. Plos One, 2015, 10(10): e0140934.
doi: 10.1371/journal.pone.0140934 URL |
[48] |
李翔, 桑勤勤, 束胜, 等. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响[J]. 园艺学报, 2016, 43(10): 2012-2020.
doi: 10.16420/j.issn.0513-353x.2016-0364 |
Li X, Sang QQ, Shu S, et al. Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light[J]. Acta Hortic Sin, 2016, 43(10): 2012-2020.
doi: 10.16420/j.issn.0513-353x.2016-0364 |
[1] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[2] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[3] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[4] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[5] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[6] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[7] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[8] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[9] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[10] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[11] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[12] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[13] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[14] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[15] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||