Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 34-46.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0379
Previous Articles Next Articles
XIONG Xin-yi1,2(), LIU Li-ping2, FENG Jie2, ZHANG Jin-song2, LI De-shun2, LIU Peng2(), LIU Yan-fang2()
Received:
2024-04-21
Online:
2024-11-26
Published:
2024-12-19
Contact:
LIU Peng, LIU Yan-fang
E-mail:xxinyi1030@163.com;liupeng@saas.sh.cn;aliu-1980@163.com
XIONG Xin-yi, LIU Li-ping, FENG Jie, ZHANG Jin-song, LI De-shun, LIU Peng, LIU Yan-fang. Effect and Mechanism of Cordyceps militaris Extract on Lowering Uric Acid in Hyperuricemia Rats[J]. Biotechnology Bulletin, 2024, 40(11): 34-46.
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
URAT1 | F: GCTACCAGAATCGGCACGCT |
R: CACCGGGAAGTCCACAATCC | |
GLUT9 | F: GAGATGCTCATTGTGGGACG |
R: GTGCTACTTCGTCCTCGGT | |
ABCG2 | F: GTAGGTCGGTGTGCGAGTCA |
R: AACCAGTTGTGGGCTCATCC | |
OAT1 | F: GGCACCTTGATTGGCTATGT |
R: CCACAGCATGGAGAGACAGA | |
TNF-α | F: GCGTGTTCATCCGTTCTCTACC |
R: TACTTCAGCGTCTCGTGTGTTTCT | |
IL-6 | F: AGTTGCCTTCTTGGGACTGATGT |
R: GGTCTGTTGTGGGTGGTATCCTC | |
β-actin | F: GCAGGAGTACGATGAGTCCG |
R: ACGCAGCTCAGTAACAGTCC |
Table 1 Primers for RT-qPCR target genes
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
URAT1 | F: GCTACCAGAATCGGCACGCT |
R: CACCGGGAAGTCCACAATCC | |
GLUT9 | F: GAGATGCTCATTGTGGGACG |
R: GTGCTACTTCGTCCTCGGT | |
ABCG2 | F: GTAGGTCGGTGTGCGAGTCA |
R: AACCAGTTGTGGGCTCATCC | |
OAT1 | F: GGCACCTTGATTGGCTATGT |
R: CCACAGCATGGAGAGACAGA | |
TNF-α | F: GCGTGTTCATCCGTTCTCTACC |
R: TACTTCAGCGTCTCGTGTGTTTCT | |
IL-6 | F: AGTTGCCTTCTTGGGACTGATGT |
R: GGTCTGTTGTGGGTGGTATCCTC | |
β-actin | F: GCAGGAGTACGATGAGTCCG |
R: ACGCAGCTCAGTAACAGTCC |
氨基酸成分 Amino acid component | 含量 Content/% | 氨基酸成分 Amino acid component | 含量 Content/% | 核苷类成分 Nucleosides component | 含量 Content/% |
---|---|---|---|---|---|
L-组氨酸 | 0.16 | L-脯氨酸 | 0.41 | 胞嘧啶 | 0.01 |
L-精氨酸 | 0.94 | L-鸟氨酸 | 2.31 | 胞苷 | 0.03 |
L-天冬酰胺 | 0.25 | D-2-氨基丁酸 | 0.02 | 鸟嘌呤 | 0.02 |
L-谷氨酰胺 | 0.01 | L-赖氨酸 | 1.08 | 腺嘌呤 | 0.03 |
L-丝氨酸 | 0.59 | L-酪氨酸 | 0.34 | 尿苷 | 0.41 |
L-甘氨酸 | 0.14 | L-甲硫氨酸 | 0.09 | 胸腺嘧啶 | 0.04 |
L-天冬氨酸 | 0.68 | L-缬氨酸 | 0.64 | 肌苷 | 0.06 |
L-瓜氨酸 | 0.02 | L-异亮氨酸 | 0.34 | 鸟苷 | 0.21 |
L-谷氨酸 | 1.92 | L-亮氨酸 | 0.65 | 胸苷 | 0.02 |
L-苏氨酸 | 0.76 | L-苯丙氨酸 | 0.28 | 腺苷 | 0.34 |
L-丙氨酸 | 1.57 | L-色氨酸 | 0.10 | 虫草素 | 0.83 |
γ-氨基丁酸 | 0.25 | N6-(2-羟乙基)腺苷 | 0.54 |
Table 2 Analysis of amino acids and nucleosides components in C. militaris extract
氨基酸成分 Amino acid component | 含量 Content/% | 氨基酸成分 Amino acid component | 含量 Content/% | 核苷类成分 Nucleosides component | 含量 Content/% |
---|---|---|---|---|---|
L-组氨酸 | 0.16 | L-脯氨酸 | 0.41 | 胞嘧啶 | 0.01 |
L-精氨酸 | 0.94 | L-鸟氨酸 | 2.31 | 胞苷 | 0.03 |
L-天冬酰胺 | 0.25 | D-2-氨基丁酸 | 0.02 | 鸟嘌呤 | 0.02 |
L-谷氨酰胺 | 0.01 | L-赖氨酸 | 1.08 | 腺嘌呤 | 0.03 |
L-丝氨酸 | 0.59 | L-酪氨酸 | 0.34 | 尿苷 | 0.41 |
L-甘氨酸 | 0.14 | L-甲硫氨酸 | 0.09 | 胸腺嘧啶 | 0.04 |
L-天冬氨酸 | 0.68 | L-缬氨酸 | 0.64 | 肌苷 | 0.06 |
L-瓜氨酸 | 0.02 | L-异亮氨酸 | 0.34 | 鸟苷 | 0.21 |
L-谷氨酸 | 1.92 | L-亮氨酸 | 0.65 | 胸苷 | 0.02 |
L-苏氨酸 | 0.76 | L-苯丙氨酸 | 0.28 | 腺苷 | 0.34 |
L-丙氨酸 | 1.57 | L-色氨酸 | 0.10 | 虫草素 | 0.83 |
γ-氨基丁酸 | 0.25 | N6-(2-羟乙基)腺苷 | 0.54 |
Fig. 2 Effects of C. militaris extract on renal function and renal pathological injury in hyperuricemia rats A: Serum uric acid level; B: serum urea nitrogen concentration; C: serum creatinine concentration; D: renal fibrotic area; E: HE staining of kidney; F: masson staining of kidney. Compared with CTL group, ###: P<0.001;compared with MC group, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
Fig. 3 Effects of C. militaris extract on renal oxidative stress in hyperuricemia rats A: Renal GSH content; B: renal MDA content; C: renal T-AOC. Compared with CTL group, #: P<0.05;compared with MC group, **: P<0.01, ***: P<0.001
Fig. 4 Effects of C. militaris extract on renal inflammation in hyperuricemia rats A: IHC staining of CD68; B: IHC staining of NLRP3; C: IHC staining of IL-1β; D: positive area of CD68; E: relative mRNA levels of IL-6; F: relative mRNA levels of TNF-α; G: positive area of NLRP3; H: positive area of IL-1β. Compared with CTL group, ###: P<0.001;compared with MC group, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
Fig. 5 Effects of C. militaris extract on renal uric acid transporter in hyperuricemia rats A: IHC staining of URAT1; B: IHC staining of OAT1; C: positive area of URAT1; D: relative mRNA levels of URAT1; E: relative mRNA levels of GLUT9; F: positive area of OAT1; G: relative mRNA levels of OAT1; H: relative mRNA levels of ABCG2. Compared with CTL group, ###: P<0.001;compared with MC group, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
Fig. 6 Effects of C. militaris extract on XOD activity and liver pathological injury in hyperuricemia rats A: XOD activity in kidney; B: HE staining of kidney. Compared with CTL group, ###: P<0.001;compared with MC group, *: P<0.05, **: P<0.01, ***: P<0.001. Scale bar: 100 μm
[1] | 中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019)[J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13. |
Chinese Society of Endocrinology. Guideline for the diagnosis and management of hyperuricemia and gout in China(2019)[J]. Chin J Endocrinol Metab, 2020, 36(1): 1-13. | |
[2] |
Yip K, Cohen RE, Pillinger MH. Asymptomatic hyperuricemia: is it really asymptomatic?[J]. Curr Opin Rheumatol, 2020, 32(1): 71-79.
doi: 10.1097/BOR.0000000000000679 pmid: 31688126 |
[3] | 周启蒙, 赵晓悦, 梁宇, 等. 治疗高尿酸血症相关药物研究新进展[J]. 中国新药杂志, 2021, 30(10): 929-936. |
Zhou QM, Zhao XY, Liang Y, et al. New progress in research on drugs for treatment of hyperuricemia[J]. Chin J N Drugs, 2021, 30(10): 929-936. | |
[4] | Yang BD, Xin ML, Liang SF, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds[J]. Front Pharmacol, 2022, 13: 1026246. |
[5] | Jędrejko KJ, Lazur J, Muszyńska B. Cordyceps militaris: an overview of its chemical constituents in relation to biological activity[J]. Foods, 2021, 10(11): 2634. |
[6] | Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms[J]. Microorganisms, 2022, 10(2): 405. |
[7] | Yong TQ, Chen SD, Xie YZ, et al. Cordycepin, a characteristic bioactive constituent in Cordyceps militaris, ameliorates hyperuricemia through URAT1 in hyperuricemic mice[J]. Front Microbiol, 2018, 9: 58. |
[8] | Yong TQ, Zhang ML, Chen DL, et al. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine[J]. J Ethnopharmacol, 2016, 194: 403-411. |
[9] |
刘艳芳, 高坤, 冯杰, 等. 酿酒酵母发酵降解灵芝胞外多糖组分分析及活性研究[J]. 菌物学报, 2020, 39(2): 372-380.
doi: 10.13346/j.mycosystema.190343 |
Liu YF, Gao K, Feng J, et al. Analysis and activity of polysaccharide from Ganoderma lucidum by fermentation of Saccharomyces cerevisiae[J]. Mycosystema, 2020, 39(2): 372-380. | |
[10] | 李娜, 唐传红, 刘艳芳, 等. 深层发酵用高产灵芝胞内多糖菌株的筛选[J]. 食用菌学报, 2021, 28(3): 63-71. |
Li N, Tang CH, Liu YF, et al. Screening of Ganoderma lucidum strains for high intracellular polysaccharide yield in submerged fermentation[J]. Acta Edulis Fungi, 2021, 28(3): 63-71. | |
[11] | 宋俊英. 茶薪菇总糖、还原糖和多糖的测定[J]. 中草药, 2006, 37(9): 1421-1422. |
Song JY. Determination of total sugar, reducing sugar and polysaccharide in Agrocybe chaxingu[J]. Chin Tradit Herb Drugs, 2006, 37(9): 1421-1422. | |
[12] | 孙梦雪, 倪立颖, 黄裕鸿, 等. 蒸汽爆破处理对金针菇菇脚水提物抗氧化及抗炎活性的影响[J]. 食品工业科技, 2023, 44(17): 91-99. |
Sun MX, Ni LY, Huang YH, et al. Effects of steam explosion on antioxidant and anti-inflammatory activities of water extracts of Flammulina velutipes stembase[J]. Sci Technol Food Ind, 2023, 44(17): 91-99. | |
[13] |
Bao YL, Boeren S, Ertbjerg P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding[J]. Meat Sci, 2018, 135: 102-108.
doi: S0309-1740(17)30998-1 pmid: 28968552 |
[14] | 平志豪, 唐庆九, 王金艳, 等. 大孔吸附树脂富集香菇中核苷类成分的工艺优化[J]. 食用菌学报, 2021, 28(5): 79-86. |
Ping ZH, Tang QJ, Wang JY, et al. Process optimization for enriching nucleosides in Lentinula edodes by macroporous resin[J]. Acta Edulis Fungi, 2021, 28(5): 79-86. | |
[15] | 王丹, 李河, 张志军, 等. 紫苏籽粕蛋白糖基化产物结构及功能特性[J]. 浙江大学学报: 农业与生命科学版, 2023, 49(4): 557-565. |
Wang D, Li H, Zhang ZJ, et al. Structural and functional properties of the glycosylated products of perilla seed meal proteins[J]. J Zhejiang Univ Agric Life Sci, 2023, 49(4): 557-565. | |
[16] | Guo MJ, Wu FH, Hao GG, et al. Bacillus subtilis improves immunity and disease resistance in rabbits[J]. Front Immunol, 2017, 8: 354. |
[17] | Kim GH, Jun JB. Altered serum uric acid levels in kidney disorders[J]. Life, 2022, 12(11): 1891. |
[18] | Lv SM, Zhang MQ, Chen JS, et al. Study on the anti-hyperuricemic bioactivity and chemical components of Sterculiae lychnophorae Semen[J]. J Funct Foods, 2022, 95: 105173. |
[19] |
Yang Y, Wang HN, Kouadir M, et al. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors[J]. Cell Death Dis, 2019, 10(2): 128.
doi: 10.1038/s41419-019-1413-8 pmid: 30755589 |
[20] |
Kurajoh M, Fukumoto S, Yoshida S, et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry[J]. Sci Rep, 2021, 11(1): 7378.
doi: 10.1038/s41598-021-86962-0 pmid: 33795813 |
[21] | Liu YL, Gong ST, Li KJ, et al. Coptisine protects against hyperuricemic nephropathy through alleviating inflammation, oxidative stress and mitochondrial apoptosis via PI3K/Akt signaling pathway[J]. Biomed Pharmacother, 2022, 156: 113941. |
[22] |
Bhatnagar V, Richard EL, Wu W, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling[J]. Clin Kidney J, 2016, 9(3): 444-453.
doi: 10.1093/ckj/sfw010 pmid: 27274832 |
[23] | Wang ZL, Li YC, Liao WH, et al. Gut microbiota remodeling: a promising therapeutic strategy to confront hyperuricemia and gout[J]. Front Cell Infect Microbiol, 2022, 12: 935723. |
[24] | Chien CY, Chien YJ, Lin YH, et al. Supplementation of Lactobacillus plantarum(TCI227)prevented potassium-oxonate-induced hyperuricemia in rats[J]. Nutrients, 2022, 14(22): 4832. |
[25] | 孙雪微, 赵伟, 罗进城, 等. 叶酸调控对高尿酸血症大鼠肠道微生物的影响[J]. 微生物学杂志, 2022, 42(2): 65-72. |
Sun XW, Zhao W, Luo JC, et al. Effect of folic acid on intestinal duct microorganisms in rats with hyperuricemia[J]. J Microbiol, 2022, 42(2): 65-72. | |
[26] | 何新超. 鼠曲草萃取物对高尿酸血症大鼠的影响机制探究及固体饮料的研制[D]. 南昌: 南昌大学, 2023. |
He XC. Study on the mechanism of the effect of the extract of Rodent on hyperuricemia rats and the development of solid beverage[D]. Nanchang: Nanchang University, 2023. | |
[27] | Wei BQ, Ren PF, Xue CH, et al. Guluronate oligosaccharides exerts beneficial effects on hyperuricemia and regulation of gut microbiota in mice[J]. Food Biosci, 2023, 54: 102855. |
[28] | Sun YG, Zhang SS, Nie QX, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis[J]. Crit Rev Food Sci Nutr, 2023, 63(33): 12073-12088. |
[29] | 杨莹, 韩宇, 黄锦坚, 等. 肠道菌群代谢物参与高尿酸血症的病理机制[J]. 临床与病理杂志, 2023, 43(9): 1631-1641. |
Yang Y, Han Y, Huang JJ, et al. Pathological mechanisms of gut microbiota metabolites in hyperuricemia[J]. J Clin Pathol Res, 2023, 43(9): 1631-1641. | |
[30] | Wang ZY, Zhang ZX, Lu CY, et al. Effects of Sporisorium reiliana polysaccharides and Phoenix dactylifera monosaccharides on the gut microbiota and serum metabolism in mice with fructose-induced hyperuricemia[J]. Arch Microbiol, 2022, 204(7): 436. |
[31] | Liu JY, Feng CP, Li X, et al. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice[J]. Int J Biol Macromol, 2016, 86: 594-598. |
[32] | Yu RM, Song LY, Zhao Y, et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris[J]. Fitoterapia, 2004, 75(5): 465-472. |
[33] | Lin SM, Meng J, Li F, et al. Ganoderma lucidum polysaccharide peptide alleviates hyperuricemia by regulating adenosine deaminase and urate transporters[J]. Food Funct, 2022, 13(24): 12619-12631. |
[1] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[2] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[3] | HE Ya-lun, ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong. Effects of High-dose Tannic Acid on the Intestinal Barrier Function and Gut Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(4): 278-287. |
[4] | LI Hai-chao, XIE Fei, ZHANG Yuan-qi, GUAN Ruo-bing. Effects of Resistant and Sensitive Rice Varieties on Gut Microbiota of Nilaparvata lugens [J]. Biotechnology Bulletin, 2021, 37(3): 1-9. |
[5] | GUO Yu-feng, WANG Qiao, WANG Xiang-feng, ZHOU Ting, YANG Xiao-jun, WANG Qing-ji, WANG Li. Screening of Superior Strains Isolated from Wild Cordyceps militaris in Mountain Tai [J]. Biotechnology Bulletin, 2021, 37(11): 125-133. |
[6] | HUANG Xiao-dan, CHEN Meng-yu, HUANG Wen-jie, ZHANG Ming-wei, YAN Shi-juan. Progress Based on Metabolomics:Plant Polyphenols and Their Gut Health Benefit [J]. Biotechnology Bulletin, 2021, 37(1): 123-136. |
[7] | LIU Yu, DING Qian-wen, RAN Chao, YANG Ya-lin, WANG An-ran, ZHANG Hong-ling, ZHANG Jin-xiong, LI Jie, Rolf Erik OLSEN, Einar RINGØ, ZHANG Zhen, ZHOU Zhi-gang. Research Advances on Short-chain Fatty Acids of Metabolites of Gut Microbiota in Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 58-64. |
[8] | WU Qin, XU Zi-yang, LIU Li-ping, ZHANG Wen-ying, SONG Si-yuan. Role of Gut Microbiota in Stress-induced Hypertension in Rats [J]. Biotechnology Bulletin, 2020, 36(2): 83-90. |
[9] | DU Ruo-xi, GUO Ming-zhang, XIE Zi-xin, HE Xiao-yun, HUANG Kun-lun, XU Wen-tao. Application and Prospect of Synthetic Biology in Improving Intestinal Health [J]. Biotechnology Bulletin, 2018, 34(1): 49-59. |
[10] | LIU Dong-lian, LIAO Meng-ling, ZHOU Huan. Research Progress on the Correlation Analysis Between Diabetes and Gut Microbiota Using High Throughput Sequencing [J]. Biotechnology Bulletin, 2016, 32(9): 59-64. |
[11] | Wan Yue, Qi Jiying, Zeng Hong, Han Yang, Han Jing. Optimization of Ultrasonic Assisted Extraction of Lentinan by Response Surface Methodology [J]. Biotechnology Bulletin, 2015, 31(1): 79-85. |
[12] | Zhao Jie, Ma Chen, Xi Xiaomin, Zhang Heping. Advances of Real-time PCR Technology in the Field of Gut Microbiota [J]. Biotechnology Bulletin, 2014, 30(12): 61-66. |
[13] | Zhao Na,Liu Shelan,Lu Jiqi,He Hongxuan,Zhao Baohua. Characterization of Intestinal Microbiota in Feces from Captive Healthy Rhesus Macaques [J]. Biotechnology Bulletin, 2013, 0(7): 153-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||