[1] 郑艺, 张家超, 郭壮, 等. 基于高通量测序技术分析肠道菌群及其影响因素的研究进展[J]. 中国食品学报, 2014, 14(11):157-165. [2] 周雪雁, 刘翊中, 陈轶霞, 等. 动物肠道菌群结构分析方法进展[J]. 微生物学杂志, 2013, 33(5):81-87. [3] 李东萍, 郭明璋, 许文涛. 16S rRNA测序技术在肠道微生物中的应用研究进展[J]. 生物技术通报, 2015, 31(2):71-77. [4] Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease[J]. Physiolog Rev, 2010, 90(3):859-904. [5] 谷莉. 不同鼠种的肠道菌群在不同饮食结构干预中的组成改变[D]. 长沙:中南大学, 2014. [6] 齐翠娟, 肖新华. 肠道菌群与1型糖尿病[J]. 中国糖尿病杂志, 2015, 23(6):574-576. [7] Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes[J]. Diabetes, 2015, 64(10):3510-3520. [8] Mejía-León ME, Petrosino JF, Ajami NJ, et al. Fecal microbiota imbalance in Mexican children with type 1 diabetes[J]. Sci Rep, 2014, 4:3814. [9] Wirth R, Bódi N, Maróti G, et al. Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induceddiabetes[J]. PLoS One, 2014, 9(12):110440. [10] Patterson E, Marques TM, O’Sullivan O, et al. Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity[J]. Microbiology, 2015, 161(1):182-193. [11] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60. [12] Vital M, Howe AC, Tiedje JM, et al. Revealing the bacterial butyrate synthesis pathways by analyzing(meta)genomic data[J]. MBio, 2014, 5(2):00889. [13] Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. PLoS One, 2010, 5(2):e9085. [14] Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One, 2013, 8(8):e71108. [15] Fugmann M, Breier M, Rottenkolber M, et al. The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes[J]. Sci Rep, 2015, doi:10. 1038/srep13212. [16] Hu J, Nomura Y, Bashir A, et al. Diversified microbiota of meconium is affected by maternal diabetes status[J]. PLoS One, 2013, 8(11):78257. [17] Di Luccia B, Crescenzo R, Mazzoli A, et al. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity[J]. PLoS One, 2015, 10(8):0134893. [18] Hansen CH, Krych L, Buschard K, et al. A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice[J]. Diabetes, 2014, 63(8):2821-2832. [19] Marietta EV, Gomez AM, Yeoman C, et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome[J]. PLoS One, 2013, 8(11):e78687. [20] Kim MS, Hwang SS, Park EJ, et al. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiotaand reducing intestinal inflammation[J]. Environ Microbiol Rep, 2013, 5(5):765-775. [21] Su B, Liu H, Li J, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus 2[J]. J Diabetes, 2015, 7(5):729-739. [22] Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63(5):727-735. [23] Xu J, Lian F, Zhao L, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula[J]. ISME J, 2015, 9(3):552-562. [24] Zhang X, Zhao Y, Zhang M, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats[J]. PLoS One, 2012, 7(8):42529. [25] Anhe FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice[J]. Gut, 2015, 64(6):872-883. [26] Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome[J]. Diabetes, 2015, 64(8):2847-2858. [27] Schogor AL, Huws SA, Santos GT, et al. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants[J]. PLoS One, 2014, 9(4):87949. [28] 沈定树, 郑静. 益生元与肠道微生态[J]. 中国微生态学杂志, 2013, 25(6):742-744. [29] Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice[J]. Diabetes, 2011, 60(11):2775-2786. [30] Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept:lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women[J]. Gut, 2013, 62(8):1112-1121. [31] 张发明, 范志宁, 季国忠. 粪菌移植的概念、历史、现状和未来[J]. 中国内镜杂志, 2012, 18(9):930-935. [32] Brown K, Godovannyi A, Ma C, et al. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice[J]. ISME J, 2015, 10(2):321-322. [33] Hartstra AV, Bouter KE, Backhed F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes[J]. Diabetes Care, 2015, 38(1):159-165. [34] Candon S, Perez-Arroyo A, Marquet C, et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes[J]. PLoS One, 2015, 10(5):e0125448. [35] 叶乃芳, 王中新. 16S rRNA及相关技术用于临床细菌鉴定的研究进展[J]. 国际检验医学杂志, 2015, 36(4):520-522. |