Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (12): 264-274.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0346
Previous Articles Next Articles
LIU He-lan1,2(
), CHEN Ze-hui1, LI Ming-zhe1, ZHOU Yong-wen1, LI Rui1, WANG Yong-xiang1(
)
Received:2024-04-11
Online:2024-12-26
Published:2025-01-15
Contact:
WANG Yong-xiang
E-mail:1141259063@qq.com;865681289@qq.com
LIU He-lan, CHEN Ze-hui, LI Ming-zhe, ZHOU Yong-wen, LI Rui, WANG Yong-xiang. Induction and Circular Structure Analysis of Prophage in Carbapenem-resistant Hypermucoviscous Klebsiella pneumonia K2-ST375[J]. Biotechnology Bulletin, 2024, 40(12): 264-274.
| 引物名称Primer name | 引物序列Primer sequence(5'-3') | 片段长度Fragment length/bp | 延伸时间Extension time/s |
|---|---|---|---|
| Prophage-1-诱导 Prophage-1-induction | F: TCGTTTCGCCGTTATTTTCAGC R: CTGATAGGACATCATCGGCAGTAA | 860 | 50 |
| Prophage-2-诱导 Prophage-2-induction | F: ATGCAAAGACGCACACAACAG R: TAAGGCTGTAGGTGTTCCGCTCTA | 1 167 | 90 |
| Prophage-3-诱导 Prophage-3-induction | F: AGCAGAGTTAGCTGTCTTTTTGACT R: TATGGTTCTGGGCTGGCAACATCA | 1 373 | 90 |
| Prophage-4-诱导 Prophage-4-induction | F: AGCTCGCAGAAAGTCAGGTATTTG R: GTAGGTGTCGATATTGTAGCGTTCC | 1 680 | 90 |
| Prophage-4-环化 Prophage-4-cyclization | F: ACATCGCCCGGATGGAACACTA R: CGGAACTTGCCACATTGAGAGGA | 704 | 50 |
Table 1 Primers used to induce prophages and verify its circular structure in this study
| 引物名称Primer name | 引物序列Primer sequence(5'-3') | 片段长度Fragment length/bp | 延伸时间Extension time/s |
|---|---|---|---|
| Prophage-1-诱导 Prophage-1-induction | F: TCGTTTCGCCGTTATTTTCAGC R: CTGATAGGACATCATCGGCAGTAA | 860 | 50 |
| Prophage-2-诱导 Prophage-2-induction | F: ATGCAAAGACGCACACAACAG R: TAAGGCTGTAGGTGTTCCGCTCTA | 1 167 | 90 |
| Prophage-3-诱导 Prophage-3-induction | F: AGCAGAGTTAGCTGTCTTTTTGACT R: TATGGTTCTGGGCTGGCAACATCA | 1 373 | 90 |
| Prophage-4-诱导 Prophage-4-induction | F: AGCTCGCAGAAAGTCAGGTATTTG R: GTAGGTGTCGATATTGTAGCGTTCC | 1 680 | 90 |
| Prophage-4-环化 Prophage-4-cyclization | F: ACATCGCCCGGATGGAACACTA R: CGGAACTTGCCACATTGAGAGGA | 704 | 50 |
Fig. 1 Schematic diagram of the integration sites and Prophage-induced primer amplification region in CR-HMKP K2-ST375 The four different colors indicate the four prophages, respectively. F1 - F4 are the forward primers for Prophage-1 - Prophage-4 induced identification, respectively; R1 - R4 are the reverse primers for Prophage-1 - Prophage-4 induced identification, respectively
| Prophage | Start | End | Length/bp | Score | GC content/% | Closest phage |
|---|---|---|---|---|---|---|
| Prophage-1 | 1829249 | 1869257 | 40009 | 0.81 | 49.59 | Klebsiella phage KPP5665-2 |
| Prophage-2 | 3908143 | 3928480 | 20338 | 0.94 | 50.68 | Morganella phage IME1369_03 |
| Prophage-3 | 3914937 | 3936414 | 21478 | 0.92 | 50.79 | Klebsiella phage 2b LV-2017 |
| Prophage-4 | 3928593 | 3974191 | 45599 | 0.99 | 52.36 | Klebsiella phage 2 LV-2017 |
Table 2 Distribution of prophages in the chromosome of CR-HMKP K2-ST375
| Prophage | Start | End | Length/bp | Score | GC content/% | Closest phage |
|---|---|---|---|---|---|---|
| Prophage-1 | 1829249 | 1869257 | 40009 | 0.81 | 49.59 | Klebsiella phage KPP5665-2 |
| Prophage-2 | 3908143 | 3928480 | 20338 | 0.94 | 50.68 | Morganella phage IME1369_03 |
| Prophage-3 | 3914937 | 3936414 | 21478 | 0.92 | 50.79 | Klebsiella phage 2b LV-2017 |
| Prophage-4 | 3928593 | 3974191 | 45599 | 0.99 | 52.36 | Klebsiella phage 2 LV-2017 |
Fig. 2 Induction and verification of circularization structure of Prophage-4 A: Prophage-4 induction by mitomycin C; M: DNA marker DL2000; lane 1: the Prophage-4-induction primers were used to amplify the bacterial supernatant; lane 2: the primer of phoE were used to amplify the bacterial supernatant; lane 3: negative control. B: Identification of circularization structure of Prophage-4; M: DNA marker DL2000; lane 1: the Prophage-4-cyclization primer were used to amplify the bacterial supernatant; lane 2: the primer of phoE were used to amplify the bacterial supernatant; lane 3: negative control
Fig. 3 Schematic diagram of Prophage-4 circular structure formation The first diagram shows the integration of Prophage-4 into the Kp0179 chromosome, where blue indicates the Prophage-4 genome, red and yellow respectively indicate the 40 bp homologous repeats sequences HR1 and HR2; the adjacent attL is the left attachment site, and attR is the right attachment site. The middle diagram shows the Kp0179 chromosome with the 40 bp homologous repeats sequences present in the Prophage-4 genome. The diagram on the right shows Prophage-4 being excised from the Kp0179 chromosome to form phage-4, with the large green circle representing the Kp0179 chromosome after excision. In the dotted box is an amplified region of the cyclization primer for Prophage-4
Fig. 4 Genetic structure of Prophage-4 in the chromosome of CR-HMKP K2-ST375 From the inside to the outside: the first layer refers to the genome length of Prophage-4; the second layer refers to the GC content; the third layer refers to the GC skew; and the outermost layer refers to the coding genes of Prophage-4
| 理化信息Physicochemical information | 参数Parameter |
|---|---|
| 氨基酸残基个数Number of amino acid residues | 163.00 |
| 理论分子质量 Theoretical molecular mass/Da | 18 029.81 |
| 理论等电点Theoretical isoelectric point | 9.67 |
| 消光系数Extinction coefficient | 1.90 |
| 甲硫氨酸个数Number of Methionine | 3.00 |
| 半胱氨酸个数Number of Cysteine | 4.00 |
| 不稳定系数Instability index | 31.14 |
Table 3 Physicochemical properties of the endolysin protein
| 理化信息Physicochemical information | 参数Parameter |
|---|---|
| 氨基酸残基个数Number of amino acid residues | 163.00 |
| 理论分子质量 Theoretical molecular mass/Da | 18 029.81 |
| 理论等电点Theoretical isoelectric point | 9.67 |
| 消光系数Extinction coefficient | 1.90 |
| 甲硫氨酸个数Number of Methionine | 3.00 |
| 半胱氨酸个数Number of Cysteine | 4.00 |
| 不稳定系数Instability index | 31.14 |
| 亚细胞定位 Subcellular localization | LocDB | PotLocDB | NNets | Pentamers | Integral |
|---|---|---|---|---|---|
| 细胞质Cytoplasm | 0.00 | 0.00 | 0.27 | 0.34 | 1.08 |
| 细胞膜Cell membrane | 0.00 | 0.00 | 2.73 | 2.73 | 8.76 |
| 分泌蛋白 Secreted proteins | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Table 4 Subcellular localization of the endolysin protein
| 亚细胞定位 Subcellular localization | LocDB | PotLocDB | NNets | Pentamers | Integral |
|---|---|---|---|---|---|
| 细胞质Cytoplasm | 0.00 | 0.00 | 0.27 | 0.34 | 1.08 |
| 细胞膜Cell membrane | 0.00 | 0.00 | 2.73 | 2.73 | 8.76 |
| 分泌蛋白 Secreted proteins | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fig. 5 Prediction of signal peptides in endolysin by SignalP 4.1 The horizontal axis of the curve indicates the sequence, and the vertical axis indicates the score. Purple, green, and blue colors indicate the cleavage site score(C-score), signal peptide score(S-score), and the combined score of C-score and S-score(Y-score), respectively. In the text output results, “NO” indicates that the endolysin does not contain a signal peptide sequence
Fig. 6 Transmembrane domains prediction of endolysin by DeepTMHMM The horizontal axis of the curve represents the sequence, and the vertical axis represents the probabilitity. Blue indicates the probability of the protein being outside the membrane, while yellow indicates the probability of signal peptides
Fig. 7 Analysis of the phosphorylation sites in endolysin using NetPhos-3.1 The horizontal axis refers to the sequence, while the vertical axis refers to the probability of phosphorylation. The four colors, red, green, blue, and pink, indicate serine, threonine, tyrosine, and the threshold, respectively. When the threshold exceeds 0.5, it indicates that the amino acid at that position is a phosphorylation site
Fig. 8 Prediction of the secondary structure of the endolysin using Phyre2 The first line indicates the sequence positions: Yellow indicates polar amino acids: A(Alanine), S(Serine), T(Threonine), G(Glycine), and P(Proline); green indicates hydrophobic amino acids: M(Methionine), I(Isoleucine), L(Leucine), and V(Valine); red indicates charged amino acids: K(Lysine), R(Arginine), E(Glutamic acid), N(Asparagine), D(Aspartic acid), H(Histidine), and Q(Glutamine); purple indicates aromatic amino acids: W(Tryptophan), Y(Tyrosine), F(Phenylalanine), and C(Cysteine). The second line indicates the secondary structure, with green for α-helices and blue for β-sheets. The third and fourth lines are for confidence assessment: red indicates high confidence 9, blue indicates low confidence 0, with a total of 10 levels divided in between
Fig. 9 Prediction the three-dimensional structure of the endolysin by SWISS-MODEL Helices indicate alpha helices, sheet-like arrows indicate beta sheets, and lines indicate random coils
Fig. 10 Conserved structural domains prediction of endolysin by CD Search The first line indicates the sequence position; the blue region indicates that this amino acid sequence completely matches with the lysozyme superfamily proteins, where the dark blue parts have a higher degree of match with endolysin R21-like; the blue triangles indicate that the amino acid is an annotated functional sites
| Prophage | Size/kb | GC/% | Accession number(prophage locus) | Query cover/% | E Value | Per. ident/% |
|---|---|---|---|---|---|---|
| PKpKPR0928-4 | 44.6 | 49.76 | CP008831(1938828-1983501) | 0 | 7e-33 | 73.09 |
| PKp4856-1 | 49.8 | 52.67 | OK490410 | 48 | 0.0 | 95.47 |
| PKp4866-6 | 50.84 | 36.4 | OK490421 | 0 | 9e-17 | 79.67 |
| PKpMGH 78578-1 | 36.7 | 50.85 | CP00064(1553547-1590292) | 0 | 6e-48 | 78.66 |
| PKp342-1 | 36.2 | 49.65 | CP000964(2880748-2917023) | 0 | 7e-47 | 83.58 |
| PKpKTCT2242-1 | 50.1 | 52.19 | CP002910(1037512-1087705) | 43 | 0.0 | 98.34 |
| PKpCG43-1 | 39 | 50.73 | CP006648(1598758-1637846) | 7 | 0.0 | 97.91 |
| PKpKP13-2 | 51.4 | 52.06 | CP003999(3181366-3232828) | 0 | 5e-55 | 82.35 |
| PKpBAA-2146-2 | 52 | 53.06 | CP006659(1293925-1345941) | 26 | 0.0 | 92.94 |
| PKpKP52-2 | 52.9 | 52.26 | FO834906(1503128-1556027) | 50 | 0.0 | 99.58 |
Table 5 Homology analysis of Prophage-4
| Prophage | Size/kb | GC/% | Accession number(prophage locus) | Query cover/% | E Value | Per. ident/% |
|---|---|---|---|---|---|---|
| PKpKPR0928-4 | 44.6 | 49.76 | CP008831(1938828-1983501) | 0 | 7e-33 | 73.09 |
| PKp4856-1 | 49.8 | 52.67 | OK490410 | 48 | 0.0 | 95.47 |
| PKp4866-6 | 50.84 | 36.4 | OK490421 | 0 | 9e-17 | 79.67 |
| PKpMGH 78578-1 | 36.7 | 50.85 | CP00064(1553547-1590292) | 0 | 6e-48 | 78.66 |
| PKp342-1 | 36.2 | 49.65 | CP000964(2880748-2917023) | 0 | 7e-47 | 83.58 |
| PKpKTCT2242-1 | 50.1 | 52.19 | CP002910(1037512-1087705) | 43 | 0.0 | 98.34 |
| PKpCG43-1 | 39 | 50.73 | CP006648(1598758-1637846) | 7 | 0.0 | 97.91 |
| PKpKP13-2 | 51.4 | 52.06 | CP003999(3181366-3232828) | 0 | 5e-55 | 82.35 |
| PKpBAA-2146-2 | 52 | 53.06 | CP006659(1293925-1345941) | 26 | 0.0 | 92.94 |
| PKpKP52-2 | 52.9 | 52.26 | FO834906(1503128-1556027) | 50 | 0.0 | 99.58 |
Fig. 11 Phylogenetic tree of Prophage-4 based on the terminase large subunit The maximum likelihood method was used to construct the CR-HMKP K2-ST375 Prophage-4 phylogenetic tree, and the numbers on the branches were the bootstrap value
Fig. 12 Phylogenetic tree of Prophage-4 based on the endolysin The maximum likelihood method was used to construct the endolysin phylogenetic tree encoded by CR-HMKP K2-ST375 Prophage-4, and the numbers on the branches were the bootstrap value
| [1] |
Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives[J]. J Intern Med, 2020, 287(3): 283-300.
doi: 10.1111/joim.13007 pmid: 31677303 |
| [2] | Harada S, Ishii Y, Saga T, et al. Molecular epidemiology of Klebsiella pneumoniae K1 and K2 isolates in Japan[J]. Diagn Microbiol Infect Dis, 2018, 91(4): 354-359. |
| [3] | Shen DX, Ma GN, Li CD, et al. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae sequence type 23 strain with a rare blaCTX-M-24-harboring virulence plasmid[J]. Antimicrob Agents Chemother, 2019, 63(3): e02273-18. |
| [4] | Lan P, Jiang Y, Zhou JC, et al. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae[J]. J Glob Antimicrob Resist, 2021, 25: 26-34. |
| [5] | 陈学梅, 魏云林, 季秀玲. 前噬菌体研究进展[J]. 遗传, 2021, 43(3): 240-248. |
|
Chen XM, Wei YL, Ji XL. Research progress of prophages[J]. Hereditas(Beijing), 2021, 43(3): 240-248.
doi: 10.16288/j.yczz.20-355 pmid: 33724208 |
|
| [6] |
Knezevic P, Voet M, Lavigne R. Prevalence of Pf1-like(pro)phage genetic elements among Pseudomonas aeruginosa isolates[J]. Virology, 2015, 483: 64-71.
doi: 10.1016/j.virol.2015.04.008 pmid: 25965796 |
| [7] |
Mottawea W, Duceppe MO, Dupras AA, et al. Salmonella enterica prophage sequence profiles reflect genome diversity and can be used for high discrimination subtyping[J]. Front Microbiol, 2018, 9: 836.
doi: 10.3389/fmicb.2018.00836 pmid: 29780368 |
| [8] | Liang JR, Kou ZQ, Qin S, et al. Novel Yersinia enterocolitica prophages and a comparative analysis of genomic diversity[J]. Front Microbiol, 2019, 10: 1184. |
| [9] | Kondo K, Kawano M, Sugai M. Distribution of antimicrobial resistance and virulence genes within the prophage-associated regions in nosocomial pathogens[J]. mSphere, 2021, 6(4): e0045221. |
| [10] | Rahman MU, Wang WX, Sun QQ, et al. Endolysin, a promising solution against antimicrobial resistance[J]. Antibiotics, 2021, 10(11): 1277. |
| [11] | Liu GJ, Zhang SY, Gao TT, et al. Identification of a novel broad-spectrum endolysin, Ply0643, with high antibacterial activity in mouse models of streptococcal bacteriaemia and mastitis[J]. Res Vet Sci, 2022, 143: 41-49. |
| [12] |
Wang CJ, Shi SC, Wei MJ, et al. Characterization of a novel broad-spectrum endolysin PlyD4 encoded by a highly conserved prophage found in Aeromonas hydrophila ST251 strains[J]. Appl Microbiol Biotechnol, 2022, 106(2): 699-711.
doi: 10.1007/s00253-021-11752-7 pmid: 34985567 |
| [13] | Kim K, Islam MM, Kim D, et al. Characterization of a novel phage ΦAb1656-2 and its endolysin with higher antimicrobial activity against multidrug-resistant Acinetobacter baumannii[J]. Viruses, 2021, 13(9): 1848. |
| [14] |
Maciejewska B, Roszniowski B, Espaillat A, et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes[J]. Appl Microbiol Biotechnol, 2017, 101(2): 673-684.
doi: 10.1007/s00253-016-7928-3 pmid: 27766357 |
| [15] | Song WC, Sun HX, Zhang C, et al. Prophage Hunter: an integrative hunting tool for active prophages[J]. Nucleic Acids Res, 2019, 47(W1): W74-W80. |
| [16] | Lorenz N, Reiger M, Toro-Nahuelpan M, et al. Identification and initial characterization of prophages in Vibrio campbellii[J]. PLoS One, 2016, 11(5): e0156010. |
| [17] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38(7): 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
| [18] | Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens[J]. Virulence, 2013, 4(5): 354-365. |
| [19] | 刘文才, 钱敏桦, 潘灵婷, 等. 一株枯草芽孢杆菌原噬菌体Bsu-yong1的基因组分析[J]. 微生物学报, 2023, 63(10):3905-3922. |
| Liu WC, Qian MH, Pan LT, et al. Genomic analysis of a Bacillus subtilis prophage vB_Bsu-yong1[J]. Acta Microbiologica Sinica, 2023, 63(10):3905-3922. | |
| [20] |
Shen JT, Zhou JJ, Xu YP, et al. Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258[J]. Genomics, 2020, 112(1): 998-1010.
doi: S0888-7543(18)30722-5 pmid: 31220585 |
| [21] |
Filipiak M, Łoś JM, Łoś M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain[J]. J Appl Genet, 2020, 61(1): 131-140.
doi: 10.1007/s13353-019-00525-8 pmid: 31808108 |
| [22] |
Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics, 2007, 23(6): 673-679.
doi: 10.1093/bioinformatics/btm009 pmid: 17237039 |
| [23] |
Feiner R, Argov T, Rabinovich L, et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J]. Nat Rev Microbiol, 2015, 13(10): 641-650.
doi: 10.1038/nrmicro3527 pmid: 26373372 |
| [24] |
Olorunniji FJ, McPherson AL, Rosser SJ, et al. Control of serine integrase recombination directionality by fusion with the directionality factor[J]. Nucleic Acids Res, 2017, 45(14): 8635-8645.
doi: 10.1093/nar/gkx567 pmid: 28666339 |
| [25] |
Qin WN, Li DF, Xu LH, et al. Complete genome analysis of an active prophage of Vibrio alginolyticus[J]. Arch Virol, 2021, 166(3): 891-896.
doi: 10.1007/s00705-020-04941-8 pmid: 33454862 |
| [26] | Blankschien MD, Potrykus K, Grace E, et al. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription[J]. PLoS Genet, 2009, 5(1): e1000345. |
| [27] |
Mahdi AA, Sharples GJ, Mandal TN, et al. Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82[J]. J Mol Biol, 1996, 257(3): 561-573.
pmid: 8648624 |
| [28] | Palacios M, Miner TA, Frederick DR, et al. Identification of two regulators of virulence that are conserved in Klebsiella pneumoniae classical and hypervirulent strains[J]. mBio, 2018, 9(4): e01443-18. |
| [29] |
Beggs GA, Brennan RG, Arshad M. MarR family proteins are important regulators of clinically relevant antibiotic resistance[J]. Protein Sci, 2020, 29(3): 647-653.
doi: 10.1002/pro.3769 pmid: 31682303 |
| [30] | Chang RYK, Nang SC, Chan HK, et al. Novel antimicrobial agents for combating antibiotic-resistant bacteria[J]. Adv Drug Deliv Rev, 2022, 187: 114378. |
| [31] |
Sun QG, Kuty GF, Arockiasamy A, et al. Regulation of a muralytic enzyme by dynamic membrane topology[J]. Nat Struct Mol Biol, 2009, 16(11): 1192-1194.
doi: 10.1038/nsmb.1681 pmid: 19881499 |
| [32] | Pu MF, Li YH, Han PJ, et al. Genomic characterization of a new phage BUCT541 against Klebsiella pneumoniae K1-ST23 and efficacy assessment in mouse and Galleria mellonella larvae[J]. Front Microbiol, 2022, 13: 950737. |
| [1] | RAO Jun, ZHAO Chen, LI Duan-hua, LIAO Hao, HUANG Jia-yu, WANG Lu. Application of Auto-induction Strategy in Ergothioneine Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(1): 333-346. |
| [2] | ZHANG Xiao-mei, ZHOU Nan-ling, ZHANG Sai-hang, WANG Chao, SHEN Yu-long, GUAN Jun-mei, MA Ling. Cloning and Expression Analysis of StDREBs Gene in Solanum tuberosum L. [J]. Biotechnology Bulletin, 2024, 40(9): 42-50. |
| [3] | ALIYA Waili, CHEN Yong-kun, KELAREMU Kelimujiang, WANG Bao-qing, CHEN Ling-na. Phylogenetic Evolution and Expression Analysis of SPL Gene Family in Juglans regia [J]. Biotechnology Bulletin, 2024, 40(6): 180-189. |
| [4] | WANG Jun-fang, HUANG Qiu-bin, ZHANG Piao-dan, ZHANG Peng-pai. Structure and Biosynthesis of Surfactin as well as Its Role in Biological Control [J]. Biotechnology Bulletin, 2024, 40(1): 100-112. |
| [5] | CHEN Zhi-min, LI Cui, WEI Ji-tian, LI Xin-ran, LIU Yi, GUO Qiang. Research Progress in the Regulation of Chlorogenic Acid Biosynthesis and Its Application [J]. Biotechnology Bulletin, 2024, 40(1): 57-71. |
| [6] | TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes [J]. Biotechnology Bulletin, 2023, 39(10): 175-183. |
| [7] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
| [8] | DUAN Xu-guo, ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu. Synergetic Enhancing the Soluble Expression of Thermotoga maritima α-Glucan Phosphorylase by Chemical Chaperones and Induction Condition Optimization [J]. Biotechnology Bulletin, 2021, 37(8): 233-242. |
| [9] | WANG Jian-yong, ZOU Yong-mei, GE Yan-bin, WANG Kai, XI Meng-li. Advance on Epigenetic Modification During Plant Callus Induction [J]. Biotechnology Bulletin, 2021, 37(8): 253-262. |
| [10] | WANG Hai-bo, GUO Jun-yun. Molecular Cloning of Cold-induced JcDnaJ20p Promoter from Jatropha curcas and Its Functional Identification in Transgenic Tobacco [J]. Biotechnology Bulletin, 2021, 37(2): 24-31. |
| [11] | LI Xiao-pei, WANG Si-ning, SHI Jing-jing, GAO Zhi-min. Progress of Plant Cuticular Wax Synthesis and Its Regulatory Factor WIN/SHN [J]. Biotechnology Bulletin, 2020, 36(12): 129-136. |
| [12] | SONG Shao-zheng, YU Kang-ying, LU Rui, ZHANG Ting, CHEN Chao-jun, PAN Sheng-qiang, CHENG Yong, ZHOU Ming-ming. Deletion of the Marker Gene in Transgenic Goat Mammary Epithelial Cells by Cre/Loxp [J]. Biotechnology Bulletin, 2019, 35(12): 105-111. |
| [13] | CHEN Wan-qi, ZHANG Hong, WANG Jin-feng, CHEN Jun-jie, LIN Xiao-wen, LUO Jie-hua, XU Yuan, CHEN Yan-fang, LU Xing-yan. Optimal Cultivation of Rabdosia rubescens Hairy Roots and the Inhibition Test of Its Extract on Tumor Cell Growth [J]. Biotechnology Bulletin, 2018, 34(10): 122-128. |
| [14] | ZHONG Jian-hong, YIN Yu, CHEN Dai-jie. Effect of Ethanol-induction on the Metabolism of Acetaldehyde in Lactobacillus rhamnosus HCCB 20591 [J]. Biotechnology Bulletin, 2017, 33(7): 133-137. |
| [15] | ZHANG Ya-fang, HE Gang, RONG Guang-tian, LIU Xian-gui, NI Shang-ge, ZHANG Shi-liang. Changes of Endogenous Hormones During the Culture of Callus from Sopatholobus suberechtus [J]. Biotechnology Bulletin, 2017, 33(3): 66-70. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||