Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 217-227.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0905
Previous Articles Next Articles
GAO Zhi-wei(), WEI Ming, YU Zu-long, WU Guo-qiang(), WEI Jun-long
Received:
2023-09-19
Online:
2024-04-26
Published:
2024-04-30
Contact:
WU Guo-qiang
E-mail:1218684014@qq.com;gqwu@lut.edu.cn
GAO Zhi-wei, WEI Ming, YU Zu-long, WU Guo-qiang, WEI Jun-long. Identification of Salt-tolerant Plant Growth-promoting Bacterium W-1 and Its Effect on the Salt-tolerance of Sainfoin(Onobrychis viciaefolia)[J]. Biotechnology Bulletin, 2024, 40(4): 217-227.
Fig. 2 Strain W-1 staining A: Gram staining. B: Endospore staining(The green dots are endospores). C: Capsule staining. D: Flagellum staining(The red arrow points to light filaments as flagella)(100×)
Fig. 3 Effects of NaCl(A)and pH(B)on the growth of strain W-1 The numbers in the legend in Fig. A and B represent NaCl concentration and pH in the medium, respectively. The error line refers to the standard deviation(n=3)
Fig. 4 Detection of plant growth-promoting characteristics of strain W-1 A: IAA color development reaction; B: phosphate solubilization color development reaction; C: phosphate solubilization, potassium solubilization, nitrogen fixation, siderophore. The numbers in Fig. A and B indicate IAA and P concentrations(mg/L); “-W-1” indicates the unvaccinated strain W-1, and “+ W-1” indicates the vaccinated strain W-1, the same below
Fig. 6 Effects of inoculation with W-1 on the fresh weight, dry weight and water content of 14-day-old sainfoin seedlings treated with different concentrations of NaCl The error line refers to the standard deviation(n=3). The lowercase letters indicate that the difference among different treatment at significant level(P< 0.05). The same below
Fig. 9 Effects of inoculation with W-1 on the contents of soluble protein, soluble sugar, proline, total chlorophyll, CAT and H2O2 in sainfoin seedlings under different concentrations of NaCl
[1] | Kumar V, Raghuvanshi N, Pandey AK, et al. Role of halotolerant plant growth-promoting rhizobacteria in mitigating salinity stress: recent advances and possibilities[J]. Agriculture, 2023, 13(1): 168. |
[2] |
Kumawat KC, Sharma B, Nagpal S, et al. Plant growth-promoting rhizobacteria: salt stress alleviators to improve crop productivity for sustainable agriculture development[J]. Front Plant Sci, 2023, 13: 1101862.
doi: 10.3389/fpls.2022.1101862 URL |
[3] | 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015, 47(4): 125-130. |
Yang Z, Wang BS. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agric Sci, 2015, 47(4): 125-130. | |
[4] | 刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展[J]. 生态学杂志, 2019, 38(3): 891-898. |
Liu LJ, Li XY. Progress in the study of soil salt accumulation in arid region[J]. Chin J Ecol, 2019, 38(3): 891-898. | |
[5] |
Das PP, Singh KR, Nagpure G, et al. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environ Res, 2022, 214(Pt 1): 113821.
doi: 10.1016/j.envres.2022.113821 URL |
[6] |
Kumar A, Behera I, Langthasa M, et al. Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: a review[J]. J Plant Nutr, 2023, 46(10): 2525-2550.
doi: 10.1080/01904167.2022.2155548 URL |
[7] |
Liu HW, Brettell LE, Qiu ZG, et al. Microbiome-mediated stress resistance in plants[J]. Trends Plant Sci, 2020, 25(8): 733-743.
doi: S1360-1385(20)30114-X pmid: 32345569 |
[8] | Ha-Tran DM, Nguyen TTM, Hung SH, et al. Roles of plant growth-promoting rhizobacteria(PGPR)in stimulating salinity stress defense in plants: a review[J]. Int J Mol Sci, 2021, 22(6): 3154. |
[9] |
Timofeeva A, Galyamova M, Sedykh S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture[J]. Plants, 2022, 11(16): 2119.
doi: 10.3390/plants11162119 URL |
[10] |
Arora M, Saxena P, Abdin MZ, et al. Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants[J]. Symbiosis, 2020, 80(1): 61-73.
doi: 10.1007/s13199-019-00656-w |
[11] |
Ferreira MJ, Silva H, Cunha A. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review[J]. Pedosphere, 2019, 29(4): 409-420.
doi: 10.1016/S1002-0160(19)60810-6 |
[12] |
He AL, Zhao LY, Ren W, et al. A volatile producing Bacillus subtilis strain from the rhizosphere of Haloxylon ammodendron promotes plant root development[J]. Plant Soil, 2023, 486(1): 661-680.
doi: 10.1007/s11104-023-05901-2 |
[13] |
Goswami, Pithwa, Dhandhukia, et al. Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert[J]. J Plant Interact, 2014, 9(1): 566-576.
doi: 10.1080/17429145.2013.871650 URL |
[14] |
Shahid M, Singh UB, Khan MS, et al. Bacterial ACC deaminase: insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants[J]. Front Microbiol, 2023, 14: 1132770.
doi: 10.3389/fmicb.2023.1132770 URL |
[15] |
Sunita K, Mishra I, Mishra J, et al. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants[J]. Front Microbiol, 2020, 11: 567768.
doi: 10.3389/fmicb.2020.567768 URL |
[16] | Ali B, Wang XK, Saleem MH, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes[J]. Plants, 2022, 11(3): 345. |
[17] |
Ali B, Hafeez A, Ahmad S, et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression[J]. Front Plant Sci, 2022, 13: 921668.
doi: 10.3389/fpls.2022.921668 URL |
[18] |
Kumawat KC, Nagpal S, Sharma P. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: a review[J]. Pedosphere, 2022, 32(2): 223-245.
doi: 10.1016/S1002-0160(21)60070-X URL |
[19] |
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects[J]. Ecotoxicol Environ Saf, 2018, 156: 225-246.
doi: 10.1016/j.ecoenv.2018.03.013 URL |
[20] |
Hayot Carbonero C, Carbonero F, Smith LMJ, et al. Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop[J]. Genet Resour Crop Evol, 2012, 59(8): 1777-1788.
doi: 10.1007/s10722-012-9800-3 URL |
[21] | 陈洁, 温素军, 梁鹏飞, 等. 干旱胁迫对红豆草根系生长及生理特性的影响[J]. 草原与草坪, 2022, 42(6): 101-109. |
Chen J, Wen SJ, Liang PF, et al. Effects of drought stress on root growth and physiological characteristics of sainfoin[J]. Grassland Turf, 2022, 42(6): 101-109. | |
[22] | 刘鑫, 汪堃, 梁鹏飞, 等. 红豆草苗期耐盐种质筛选及综合评价[J]. 西南农业学报, 2022, 35(9): 2171-2179. |
Liu X, Wang K, Liang PF, et al. Screening and comprehensive evaluation of salt tolerant germplasm of sainfoin at seedling stage[J]. Southwest China J Agric Sci, 2022, 35(9): 2171-2179. | |
[23] | 孙玉兰, 李陈建, 李瑞强, 等. 盐与干旱胁迫对10份红豆草种质萌发影响的研究[J]. 种子, 2022, 41(5): 10-16, 22. |
Sun YL, Li CJ, Li RQ, et al. Effects of salt stress and drought stress on seed germination of 10 Onobrychis viciaefolia germplasms[J]. Seed, 2022, 41(5): 10-16, 22. | |
[24] | 伍国强, 贾姝, 刘海龙, 等. 盐胁迫对红豆草幼苗生长和离子积累及分配的影响[J]. 草业科学, 2017, 34(8): 1661-1668. |
Wu GQ, Jia S, Liu HL, et al. Effect of salt stress on growth, ion accumulation, and distribution in sainfoins seedlings[J]. Pratacultural Sci, 2017, 34(8): 1661-1668. | |
[25] |
康红霞, 朱永红, 赵萌, 等. 红豆草组织培养及植株再生体系的优化[J]. 草地学报, 2021, 29(6): 1336-1342.
doi: 10.11733/j.issn.1007-0435.2021.06.025 |
Kang HX, Zhu YH, Zhao M, et al. Optimization of plant regeneration system and A callus induction of forage legume sainfoin(Onobrychis viciifolia scop.)[J]. Acta Agrestia Sin, 2021, 29(6): 1336-1342. | |
[26] | 贾姝. 超表达BvNHX基因提高红豆草耐盐性的研究[D]. 兰州: 兰州理工大学, 2017. |
Jia S. Study on improving salt tolerance of sainfoin by overexpressing BvNHX gene[D]. Lanzhou: Lanzhou University of Technology, 2017. | |
[27] |
伍国强, 李辉, 雷彩荣, 等. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响[J]. 草业学报, 2019, 28(6): 45-55.
doi: 10.11686/cyxb2019015 |
Wu GQ, Li H, Lei CR, et al. Effects of additional KCl on growth and physiological characteristics of sainfoin(Onobrychis viciaefoia)under high salt stress[J]. Acta Prataculturae Sin, 2019, 28(6): 45-55. | |
[28] | 朱雅欣. BvSnRK2.1遗传改良红豆草及甜菜碱对其耐盐性的影响[D]. 兰州: 兰州理工大学, 2023. |
Zhu YX. BvSnRK2.1 Genetic modification of sainfoin(Onobrychis viciifolia Scop.)and the effects of glycine betaine on its salt tolerance[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
[29] |
Mora-Ortiz M, Smith LMJ. Onobrychis viciifolia; a comprehensive literature review of its history, etymology, taxonomy, genetics, agronomy and botany[J]. Plant Genet Resour, 2018, 16(5): 403-418.
doi: 10.1017/S1479262118000230 URL |
[30] |
刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187.
doi: 10.11686/cyxb2021311 |
Liu XT, Yao T. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow[J]. Acta Prataculturae Sin, 2022, 31(8): 178-187. | |
[31] | 林志楷, 林文珍. 暹罗芽孢杆菌研究进展[J]. 亚热带植物科学, 2019, 48(4): 391-396. |
Lin ZK, Lin WZ. Research progress on Bacillus siamensis[J]. Subtrop Plant Sci, 2019, 48(4): 391-396. | |
[32] | 路福平, 李玉. 微生物学实验技术[M]. 2版. 北京: 中国轻工业出版社, 2020. |
Lu FP, Li Y. Experimental techniques of microbiology[M]. 2nd ed. Beijing: China Light Industry Press, 2020. | |
[33] |
漫静, 唐波, 邓波, 等. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71.
doi: 10.11686/cyxb2020321 |
Man J, Tang B, Deng B, et al. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria(PGPR)in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sin, 2021, 30(1): 59-71. | |
[34] | 赵小蓉, 林启美, 孙焱鑫, 等. 细菌解磷能力测定方法的研究[J]. 微生物学通报, 2001, 28(1): 1-4. |
Zhao XR, Lin QM, Sun YX, et al. The methods for quantifying capacity of bacteria in dissolving p compounds[J]. Microbiology, 2001, 28(1): 1-4. | |
[35] | 汤鹏, 胡佳频, 易浪波, 等. 钾长石矿区土壤解钾菌的分离与多样性[J]. 中国微生态学杂志, 2015, 27(2): 125-129. |
Tang P, Hu JP, Yi LB, et al. Isolation and phylogenetic analysis of potassium-solubilizing bacteria[J]. Chin J Microecol, 2015, 27(2): 125-129. | |
[36] |
张昊鑫, 王中华, 牛兵, 等. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1557 |
Zhang HX, Wang ZH, Niu B, et al. Screening, identification and broad-spectrum application of efficient IAA-producing bacteria dissolving phosphorus and potassium[J]. Biotechnol Bull, 2022, 38(5): 100-111. | |
[37] |
Senthilkumar M, Madhaiyan M, Sundaram S, et al. Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice(Oryza sativa L. Cv CO-43)[J]. Microbiol Res, 2009, 164(1): 92-104.
doi: 10.1016/j.micres.2006.10.007 pmid: 17207982 |
[38] |
Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiol Plant, 2003, 118(1): 10-15.
pmid: 12702008 |
[39] |
Wang YX, McAllister TA, Acharya S. Condensed tannins in sainfoin: composition, concentration, and effects on nutritive and feeding value of sainfoin forage[J]. Crop Sci, 2015, 55(1): 13-22.
doi: 10.2135/cropsci2014.07.0489 URL |
[40] | 付萍, 杨浩, 孟祥君, 等. 红豆草在甘肃省不同生态区的生产性能及品质研究[J]. 中国饲料, 2023(11): 135-139. |
Fu P, Yang H, Meng XJ, et al. Study on production performance and quality of sainfoin in different ecological areas of Gansu Province[J]. China Feed, 2023(11): 135-139. | |
[41] |
Wu GQ, Liu HL, Feng RJ, et al. Silicon ameliorates the adverse effects of salt stress on sainfoin(Onobrychis viciaefolia)seedlings[J]. Plant Soil Environ, 2017, 63(12): 545-551.
doi: 10.17221/665/2017-PSE URL |
[42] |
Upadhyay SK, Rajput VD, Kumari A, et al. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques[J]. Environ Geochem Health, 2023, 45(12): 9321-9344.
doi: 10.1007/s10653-022-01433-3 |
[43] |
Jain R, Bhardwaj P, Pandey SS, et al. Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves[J]. Front Microbiol, 2021, 12: 696667.
doi: 10.3389/fmicb.2021.696667 URL |
[44] |
Dodd IC, Pérez-Alfocea F. Microbial amelioration of crop salinity stress[J]. J Exp Bot, 2012, 63(9): 3415-3428.
doi: 10.1093/jxb/ers033 pmid: 22403432 |
[45] |
Sakamoto T, Morinaka Y, Ohnishi T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nat Biotechnol, 2006, 24(1): 105-109.
doi: 10.1038/nbt1173 pmid: 16369540 |
[46] |
Vimal SR, Patel VK, Singh JS. Plant growth promoting Curtobacterium albidum strain SRV4: an agriculturally important microbe to alleviate salinity stress in paddy plants[J]. Ecol Indic, 2019, 105: 553-562.
doi: 10.1016/j.ecolind.2018.05.014 URL |
[47] |
Kumar A, Singh S, Gaurav AK, et al. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants[J]. Front Microbiol, 2020, 11: 1216.
doi: 10.3389/fmicb.2020.01216 pmid: 32733391 |
[48] |
Sarkar A, Ghosh PK, Pramanik K, et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress[J]. Res Microbiol, 2018, 169(1): 20-32.
doi: 10.1016/j.resmic.2017.08.005 URL |
[49] |
马小兰, 周华坤, 张正芳, 等. 外源IAA对干旱胁迫下红豆草种子萌发及幼苗生长的影响[J]. 草地学报, 2023, 31(3): 796-803.
doi: 10.11733/j.issn.1007-0435.2023.03.020 |
Ma XL, Zhou HK, Zhang ZF, et al. The effects of exogenous IAA on seed germination and seedling growth of Onobrychis viciifolia scop. under the drought stress[J]. Acta Agrestia Sin, 2023, 31(3): 796-803. | |
[50] |
Taj Z, Challabathula D. Protection of photosynthesis by halotolerant Staphylococcus sciuri ET101 in tomato(Lycoperiscon esculentum)and rice(Oryza sativa)plants during salinity stress: possible interplay between carboxylation and oxygenation in stress mitigation[J]. Front Microbiol, 2021, 11: 547750.
doi: 10.3389/fmicb.2020.547750 URL |
[51] |
El-Sayed M D, EL-Maghraby LMM, Awad AE, et al. Fennel and ammi seed extracts modulate antioxidant defence system and alleviate salinity stress in cowpea(Vigna unguiculata)[J]. Sci Hortic, 2020, 272: 109576.
doi: 10.1016/j.scienta.2020.109576 URL |
[52] |
El-Esawi MA, Al-Ghamdi AA, Ali HM, et al. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea(Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression[J]. Environ Exp Bot, 2019, 159: 55-65.
doi: 10.1016/j.envexpbot.2018.12.001 |
[53] |
Desoky ES M, Saad AM, El-Saadony MT, et al. Plant growth-promoting rhizobacteria: potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum(L.) plants[J]. Biocatal Agric Biotechnol, 2020, 30: 101878.
doi: 10.1016/j.bcab.2020.101878 URL |
[54] |
Akram NA, Shafiq F, Ashraf M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance[J]. Front Plant Sci, 2017, 8: 613.
doi: 10.3389/fpls.2017.00613 pmid: 28491070 |
[55] |
Islam F, Yasmeen T, Arif MS, et al. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility[J]. Plant Growth Regul, 2016, 80(1): 23-36.
doi: 10.1007/s10725-015-0142-y URL |
[56] |
El-Esawi MA, Alaraidh IA, Alsahli AA, et al. Bacillus firmus(SW5)augments salt tolerance in soybean(Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression[J]. Plant Physiol Biochem, 2018, 132: 375-384.
doi: 10.1016/j.plaphy.2018.09.026 URL |
[57] |
Li HS, Lei P, Pang X, et al. Enhanced tolerance to salt stress in canola(Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J]. Appl Soil Ecol, 2017, 119: 26-34.
doi: 10.1016/j.apsoil.2017.05.033 URL |
[58] |
Rima FS, Biswas S, Sarker PK, et al. Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields[J]. Ann Microbiol, 2018, 68(9): 525-535.
doi: 10.1007/s13213-018-1358-7 |
[59] |
Gupta P, Kumar V, Usmani Z, et al. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus(L.)[J]. J Hazard Mater, 2019, 377: 391-398.
doi: 10.1016/j.jhazmat.2019.05.054 URL |
[60] | Morcillo RJL, Manzanera M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites, 2021, 11(6): 337. |
[61] | 韩悦欣, 伍国强, 魏明, 等. BADH在植物响应非生物胁迫中的作用[J]. 植物生理学报, 2022, 58(2): 254-264. |
Han YX, Wu GQ, Wei M, et al. The role of BADH in the response to abiotic stress in plants[J]. Plant Physiol J, 2022, 58(2): 254-264. | |
[62] | Zhao X, Tan HJ, Liu YB, et al. Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus[J]. Plant Cell Tissue Organ Cult PCTOC, 2009, 98(1): 97-103. |
[63] |
Chen L, Liu YP, Wu GW, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9[J]. Physiol Plant, 2016, 158(1): 34-44.
doi: 10.1111/ppl.12441 pmid: 26932244 |
[64] |
Upadhyay SK, Singh DP. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment[J]. Plant Biol, 2015, 17(1): 288-293.
doi: 10.1111/plb.2015.17.issue-1 URL |
[65] |
Shukla PS, Agarwal PK, Jha B. Improved salinity tolerance of arachishypogaea(L.)by the interaction of halotolerant plant-growth-promoting rhizobacteria[J]. J Plant Growth Regul, 2012, 31(2): 195-206.
doi: 10.1007/s00344-011-9231-y URL |
[66] |
Jha Y, Subramanian RB, Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress[J]. Acta Physiol Plant, 2011, 33(3): 797-802.
doi: 10.1007/s11738-010-0604-9 URL |
[1] | LI Hui, WEN Yu-fang, WANG Yue, JI Chao, SHI Guo-you, LUO Ying, ZHOU Yong, LI Zhi-min, WU Xiao-yu, YANG You-xin, LIU Jian-ping. Expression Characteristics and Functions of CaPIF4 in Capsicum annuum Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 148-158. |
[2] | GAO Yu-kun, ZHANG Jian-dong, YANG Pu-yuan, CHEN Dong-ming, WANG Zhi-bo, TIAN Yi-jin, Zakey Eldinn. E. A. Khlid, CUI Jiang-hui, CHANG Jin-hua. Responses of Sorghum Rhizosphere Soil Bacterial Communities to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 203-216. |
[3] | SHEN Tian-hong, QI Xiao-bo, ZHAO Rui-feng, MA Xin-rong. Research Progress in the Molecular Mechanisms of Microalgae Responding to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(3): 89-99. |
[4] | LI Hao, WU Guo-qiang, WEI Ming, HAN Yue-xin. Genome-wide Identification of the BvBADH Gene Family in Sugar Beet(Beta vulgaris)and Their Expression Analysis Under High Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 233-244. |
[5] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[6] | WANG Yu-qing, MA Zi-qi, HOU Jia-xin, ZONG Yu-qi, HAO Han-rui, LIU Guo-yuan, WEI Hui, LIAN Bo-lin, CHEN Yan-hong, ZHANG Jian. Research Progress in the Composition Analysis and Ecological Function of Plant Root Exudates Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(1): 12-23. |
[7] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[8] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[9] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[10] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[11] | YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants [J]. Biotechnology Bulletin, 2023, 39(12): 1-15. |
[12] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[13] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[14] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[15] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||