Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 11-19.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0520
Previous Articles Next Articles
TONG Wei-jing1,2(), LUO Shu1, LU Xin-lu1, SHEN Jian-fu3, LU Bai-yi3, LI Kai-mian4, MA Qiu-xiang1(), ZHANG Peng1,2()
Received:
2024-05-30
Online:
2024-09-26
Published:
2024-10-12
Contact:
MA Qiu-xiang, ZHANG Peng
E-mail:tongweijing@cemps.ac.cn;qxma@cemps.ac.cn;zhangpeng@cemps.ac.cn
TONG Wei-jing, LUO Shu, LU Xin-lu, SHEN Jian-fu, LU Bai-yi, LI Kai-mian, MA Qiu-xiang, ZHANG Peng. CRISPR/Cas9 Editing MeHNL Gene to Generate Cassava Plants with Low Cyanogenic Glycoside[J]. Biotechnology Bulletin, 2024, 40(9): 11-19.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 用途Use |
---|---|---|
target-Fp | GATTGCTTGGAGAAACTCCCTCAAG | Target gene |
target-Rp | AAACCTTGAGGGAGTTTCTCCAAGC | |
M13-Fp | TGTAAAACGACGGCCAGT | Identification of positive clones |
Hpt II-Fp | TTCTACACAGCCATCGGTCC | Identification of positive transgenic plants |
Hpt II-Rp | CCCATGTGTATCACTGGCAA | |
HNLgRNA-Fp | GCACCACTCACAGAAAAATCCAAAG | PCR amplification of target region |
HNLgRNA-Rp | ATGTGGCTTAATTAGAATACCGTCT |
Table 1 Primers used in this study
引物名称Primer name | 引物序列Primer sequence(5'-3') | 用途Use |
---|---|---|
target-Fp | GATTGCTTGGAGAAACTCCCTCAAG | Target gene |
target-Rp | AAACCTTGAGGGAGTTTCTCCAAGC | |
M13-Fp | TGTAAAACGACGGCCAGT | Identification of positive clones |
Hpt II-Fp | TTCTACACAGCCATCGGTCC | Identification of positive transgenic plants |
Hpt II-Rp | CCCATGTGTATCACTGGCAA | |
HNLgRNA-Fp | GCACCACTCACAGAAAAATCCAAAG | PCR amplification of target region |
HNLgRNA-Rp | ATGTGGCTTAATTAGAATACCGTCT |
Fig. 1 Schematic diagram of CRISPR/Cas9 editing vector A: The nucleotide sequences in orange box indicates the target site of MeHNL gene, the nucleotide sequences in blue box indicates the PAM site. B: The skeleton of CRISPR/Cas9 expression vector
Fig. 2 PCR identification of the positive mutant plants M: DL 2000 bp DNA marker; WT:wide type; 1-11: different mutant lines. The red arrow indicates the target fragment(MeHPT gene), the same below
Type | MeHNL-sgRNA target sites | Indel | Lines |
---|---|---|---|
WT | CTTGGAGAAACTCCCTCAAGGGGAAAAGGTCATCA | WT | |
1 | CTTGG - - - - - - - - - - - - - - - -- - - GGAAAAGGTCATCA CTTGG - - - - - - - - - - - - - - - -- - - GGAAAAGGTCATCA | -16 | L1 |
2 | CTTGGAGAAACTCCCTCAAGGGGAAAAAGGTCATCA CTTGGAGAAACTCCC - -AAGGAGAAGAGGTCATCA | +1, -2, 2 | L2, L7 |
3 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCAAAAAGGGGAAAAGGTCATCA | +1, +3 | L3, L11 |
4 | CTTGGAGAAACTCCCTCTAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCTAAGGGGAAAAGGTCATCA | +1 | L4 |
5 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCATCA CTTGGAGAAACT- - - - - - - - - - - - - - - - - - - - GTCATCA | +1, -16 | L5 |
6 | CTTGGAGAAACTCCCTCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCAAAAAGGGGAAAAGGTCATCA | +3 | L6, L9, L16 |
7 | CTTGGAGAAACTCCCTCGAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCC - - - AGGGGAAAAGGTCATCA | +1, -3 | L10 |
8 | CTTGGAGAAACTCCCTCTAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCCAAAGGGGAAAAGGTCATCA | +1, +2 | L12, L18, L31 |
9 | CTTGGAGAAACTCCCTC - - - - - - - - - - - - - - - - CATCA CTTGGAGAAACTCCCGTCAAGGGGAAAAGGTCATCA | -13, +1 | L13 |
10 | CTTGGAGAAACTCC- - - - - - -GGCAAAAGGTCATCA CTTGGAGAAACTAGCTCCAAGGGGAAAAGGTCATCA | -7, +1, +1, 2 | L14 |
11 | CTTGGAGAAACTCCCTC- AGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTC- AGGGGAAAAGGTCATCA | -1 | L15 |
12 | CTTGGAGAAACTCCCTCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCC- -AATAAGGGGAAAAGGTCATCA | -2, +3 | L17 |
13 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCA CTTGGAGAAACTCCC- -AAAAGGGGAAAAGGTCATCA | +1, -2, +2 | L19, L32 |
14 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCT- -TCA AAGGGGAAAAGGTCATCA | +1, -2, +3 | L21 |
15 | CTTGGAGAAACTCCCTCAAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCTGGAAGGGGAAAAGGTCATCA | +1, +3 | L24 |
16 | CTCTGAACCCTTATTGACTTTCTTGGAGAAACTCCCTCAAGGGG CTCTGAA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -AAGGGG | -31 | L25 |
17 | CTTGGAGAAA - - - - - - - - AGGGGAAAAGGTCATCA CTTGGAGAAA - - - - - - - - AGGGGAAAAGGTCATCA | -8 | L26 |
18 | CTTGGAGAAACTCCCTCAAG - - - - - - - - - - - - - - - - - - TCATCA CTTGGAGAAA - - - - - - GGGGAAATGAAGGGGAAAAGGTCATCA | -9, -7, +9 | L29 |
Table 2 Mutation types of MeHNL gene target sites in mutant plants
Type | MeHNL-sgRNA target sites | Indel | Lines |
---|---|---|---|
WT | CTTGGAGAAACTCCCTCAAGGGGAAAAGGTCATCA | WT | |
1 | CTTGG - - - - - - - - - - - - - - - -- - - GGAAAAGGTCATCA CTTGG - - - - - - - - - - - - - - - -- - - GGAAAAGGTCATCA | -16 | L1 |
2 | CTTGGAGAAACTCCCTCAAGGGGAAAAAGGTCATCA CTTGGAGAAACTCCC - -AAGGAGAAGAGGTCATCA | +1, -2, 2 | L2, L7 |
3 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCAAAAAGGGGAAAAGGTCATCA | +1, +3 | L3, L11 |
4 | CTTGGAGAAACTCCCTCTAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCTAAGGGGAAAAGGTCATCA | +1 | L4 |
5 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCATCA CTTGGAGAAACT- - - - - - - - - - - - - - - - - - - - GTCATCA | +1, -16 | L5 |
6 | CTTGGAGAAACTCCCTCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCAAAAAGGGGAAAAGGTCATCA | +3 | L6, L9, L16 |
7 | CTTGGAGAAACTCCCTCGAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCC - - - AGGGGAAAAGGTCATCA | +1, -3 | L10 |
8 | CTTGGAGAAACTCCCTCTAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCCAAAGGGGAAAAGGTCATCA | +1, +2 | L12, L18, L31 |
9 | CTTGGAGAAACTCCCTC - - - - - - - - - - - - - - - - CATCA CTTGGAGAAACTCCCGTCAAGGGGAAAAGGTCATCA | -13, +1 | L13 |
10 | CTTGGAGAAACTCC- - - - - - -GGCAAAAGGTCATCA CTTGGAGAAACTAGCTCCAAGGGGAAAAGGTCATCA | -7, +1, +1, 2 | L14 |
11 | CTTGGAGAAACTCCCTC- AGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTC- AGGGGAAAAGGTCATCA | -1 | L15 |
12 | CTTGGAGAAACTCCCTCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCC- -AATAAGGGGAAAAGGTCATCA | -2, +3 | L17 |
13 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCA CTTGGAGAAACTCCC- -AAAAGGGGAAAAGGTCATCA | +1, -2, +2 | L19, L32 |
14 | CTTGGAGAAACTCCCTCCAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCT- -TCA AAGGGGAAAAGGTCATCA | +1, -2, +3 | L21 |
15 | CTTGGAGAAACTCCCTCAAAGGGGAAAAGGTCATCA CTTGGAGAAACTCCCTCTGGAAGGGGAAAAGGTCATCA | +1, +3 | L24 |
16 | CTCTGAACCCTTATTGACTTTCTTGGAGAAACTCCCTCAAGGGG CTCTGAA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -AAGGGG | -31 | L25 |
17 | CTTGGAGAAA - - - - - - - - AGGGGAAAAGGTCATCA CTTGGAGAAA - - - - - - - - AGGGGAAAAGGTCATCA | -8 | L26 |
18 | CTTGGAGAAACTCCCTCAAG - - - - - - - - - - - - - - - - - - TCATCA CTTGGAGAAA - - - - - - GGGGAAATGAAGGGGAAAAGGTCATCA | -9, -7, +9 | L29 |
Fig. 5 Determination of the contents of cyanide and two raw cyanogenic glycosides in the leaves of WT and mutant plants A: The aboveground phenotypes of WT and mutant plants growth for 2 months(bars= 5 cm). B: Cyanide contents in the leaves of WT and mutant plants. C: Linamarin contents in the leaves of WT and mutant plants. D: Lotaustraline contents in the leaves of WT and mutant plants. * P<0.05; ** P<0.01; *** P<0.001
[1] | Chaiareekitwat S, Latif S, Mahayothee B, et al. Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves(Manihot esculenta Crantz)as influenced by cultivar, plant age, and leaf position[J]. Food Chem, 2022, 372: 131173. |
[2] |
严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展[J]. 中国农学通报, 2015, 31(15): 63-70.
doi: 10.11924/j.issn.1000-6850.casb14110159 |
Yan HB, Ye JQ, Li KM. Progress of cassava breeding in China[J]. Chin Agric Sci Bull, 2015, 31(15): 63-70.
doi: 10.11924/j.issn.1000-6850.casb14110159 |
|
[3] |
Hu W, Ji CM, Shi HT, et al. Allele-defined genome reveals biallelic differentiation during cassava evolution[J]. Mol Plant, 2021, 14(6): 851-854.
doi: 10.1016/j.molp.2021.04.009 pmid: 33866024 |
[4] | Conn EE. Cyanogenesis - a personal perspective[J]. Acta Hortic, 1994(375): 31-44. |
[5] | McMahon JM, White WLB, Sayre RT. REVIEW ARTICLE: Cyanogenesis in cassava(Manihot esculenta Crantz)[J]. J Exp Bot, 1995, 46(7): 731-741. |
[6] |
Siritunga D, Sayre RT. Generation of cyanogen-free transgenic cassava[J]. Planta, 2003, 217(3): 367-373.
pmid: 14520563 |
[7] |
Jørgensen K, Bak S, Busk PK, et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology[J]. Plant Physiol, 2005, 139(1): 363-374.
pmid: 16126856 |
[8] | Lieberman SE, Gueorguieva GA, Gill BK, et al. Transporter editing in cassava indicates local production of cyanogenic glucosides in, and export from, cassava roots[J]. Plant Biotechnol J, 2024, 22(4): 790-792. |
[9] | Morant AV, Jørgensen K, Jørgensen C, et al. β-Glucosidases as detonators of plant chemical defense[J]. Phytochemistry, 2008, 69(9): 1795-1813. |
[10] | Ani D, Ojila H, Abu O. Profitability of cassava processing: a case study of otukpo lga, Benue state, Nigeria[J]. Sustain Food Prod, 2019, 6: 12-23. |
[11] | Nzwalo H, Cliff J. Konzo: from poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease[J]. PLoS Negl Trop Dis, 2011, 5(6): e1051. |
[12] | Burns A, Gleadow R, Cliff J, et al. Cassava: the drought, war and famine crop in a changing world[J]. Sustainability, 2010, 2(11): 3572-3607. |
[13] |
Kashala-Abotnes E, Okitundu D, Mumba D, et al. Konzo: a distinct neurological disease associated with food(cassava)cyanogenic poisoning[J]. Brain Res Bull, 2019, 145: 87-91.
doi: S0361-9230(18)30324-1 pmid: 29981837 |
[14] | Naveena K, Chinniah C, Shanthi M. Cyanogenic glycosides and plant-herbivore interactions[J]. J Entomol Zool Stud, 2021, 9(1): 1345-1350. |
[15] |
Ceballos H, Iglesias CA, Pérez JC, et al. Cassava breeding: opportunities and challenges[J]. Plant Mol Biol, 2004, 56(4): 503-516.
doi: 10.1007/s11103-004-5010-5 pmid: 15630615 |
[16] | Piero MN. Regeneration and RNAi-mediated downregulation of cyano-glycoside biosynthesis in cassava(Manihot esculenta, Crantz)[D]. Kenyatta University, 2014. |
[17] | Juma BS, Mukami A, Mweu C, et al. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava[J]. Front Plant Sci, 2022, 13: 1009860. |
[18] | Gomez MA, Berkoff KC, Gill BK, et al. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production[J]. Front Plant Sci, 2023, 13: 1079254. |
[19] |
Siritunga D, Arias-Garzon D, White W, et al. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification[J]. Plant Biotechnol J, 2004, 2(1): 37-43.
pmid: 17166141 |
[20] | Narayanan NN, Ihemere U, Ellery C, et al. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels[J]. PLoS One, 2011, 6(7): e21996. |
[21] | Luo S, Ma QX, Zhong YY, et al. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava[J]. Plant Mol Biol, 2022, 108(4/5): 429-442. |
[22] | 李崭, 王亚杰, 陆小花, 等. 木薯MeSS III基因的CRISPR/Cas9基因编辑载体构建及验证[J]. 分子植物育种, 2020, 18(16):5367-5372. |
Li Z, Wang YJ, Lu XH, et al. Construction and verification of CRISPR/Cas9 gene editing vector for cassava MeSSIII gene[J]. Mol Plant Breed, 2020, 18(16): 5367-5372. | |
[23] | Bull SE, Seung D, Chanez C, et al. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch[J]. Sci Adv, 2018, 4(9): eaat6086. |
[24] | Wang Y, Geng M, Pan R, et al. Engineering bacterial blight-resistant plants through CRISPR/Cas9-targeted editing of the MeSWEET10a promoter in cassava[J]. bioRxiv, 2022. |
[25] | Gomez MA, Lin ZD, Moll T, et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence[J]. Plant Biotechnol J, 2019, 17(2): 421-434. |
[26] |
Zhang P, Potrykus I, Puonti-Kaerlas J. Efficient production of transgenic cassava using negative and positive selection[J]. Transgenic Res, 2000, 9(6): 405-415.
pmid: 11206969 |
[27] |
Bolarinwa IF, Orfila C, Morgan MRA. Amygdalin content of seeds, kernels and food products commercially-available in the UK[J]. Food Chem, 2014, 152: 133-139.
doi: 10.1016/j.foodchem.2013.11.002 pmid: 24444917 |
[28] | Du L. The biosynthesis of cyanogenic glucosides in roots of cassava[J]. Phytochemistry, 1995, 39(2): 323-326. |
[29] | Kannangara R, Motawia MS, Hansen NKK, et al. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava[J]. Plant J, 2011, 68(2): 287-301. |
[30] | Leyva-Guerrero E, Narayanan NN, Ihemere U, et al. Iron and protein biofortification of cassava: lessons learned[J]. Curr Opin Biotechnol, 2012, 23(2): 257-264. |
[31] | McMahon Smith J, Arteca RN. Molecular control of ethylene production by cyanide in Arabidopsis thaliana[J]. Physiol Plant, 2000, 109(2): 180-187. |
[32] |
White WLB, Arias-Garzon DI, McMahon JM, et al. Cyanogenesis in cassava. The role of hydroxynitrile lyase in root cyanide production[J]. Plant Physiol, 1998, 116(4): 1219-1225.
pmid: 9536038 |
[33] |
Zidenga T, Siritunga D, Sayre RT. Cyanogen metabolism in cassava roots: impact on protein synthesis and root development[J]. Front Plant Sci, 2017, 8: 220.
doi: 10.3389/fpls.2017.00220 pmid: 28286506 |
[34] | Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism[J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001594. |
[35] |
Rogg LE, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development[J]. Plant Cell, 2001, 13(3): 465-480.
doi: 10.1105/tpc.13.3.465 pmid: 11251090 |
[1] | TAN Bo-wen, ZHANG Yi, ZHANG Peng, WANG Zhen-yu, MA Qiu-xiang. Identification and Bioinformatics Analysis of Gene in the Magnesium Transporter Family in Cassava [J]. Biotechnology Bulletin, 2024, 40(9): 20-32. |
[2] | ZHAO Ping-juan, LIN Chen-yu, WANG Meng-yue, ZHANG Xiu-chun, LI Shu-xia, RUAN Meng-bin. Sequence Analysis of MeSDH Protein and Its Relationship with MeH1.2 in Cassava [J]. Biotechnology Bulletin, 2024, 40(9): 74-81. |
[3] | HOU Wen-ting, SUN Lin, ZHANG Yan-jun, DONG He-zhong. Application of Gene-editing Technology for Germplasm Innovation and Genetic Improvement in Cotton [J]. Biotechnology Bulletin, 2024, 40(7): 68-77. |
[4] | LONG Jing, CHEN Jing-min, LIU Xiao, ZHANG Yi-fan, ZHOU Li-bin, DU Yan. Repair Mechanisms of DNA Double-strand Breaks and Their Roles in Heavy Ion Mutagenesis and Gene Editing in Plants [J]. Biotechnology Bulletin, 2024, 40(7): 55-67. |
[5] | YANG Shuai-peng, QU Zi-xiao, ZHU Xiang-xing, TANG Dong-sheng. Optimization of DNA Base Editing Technology and Its Application in Pig Genetic Modification [J]. Biotechnology Bulletin, 2024, 40(1): 127-144. |
[6] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[7] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[10] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[11] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[12] | YU Xiao-ling, LI Wen-bin, LI Zhi-bo, RUAN Meng-bin. Cold Resistance Function Analysis of Cassava MeMYC2.2 [J]. Biotechnology Bulletin, 2023, 39(1): 224-231. |
[13] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[14] | HAN Zhi-ling, CHEN Qing, LIANG Xiao, WU Chun-ling, LIU Ying, WU Mu-feng, XU Xue-lian. Influence on Expression of Jasmonic Acid Signaling Pathway Gene in Tetranychus urticae Fed on Mite-resistant and Mite-susceptible Cassava Cultivars [J]. Biotechnology Bulletin, 2022, 38(6): 211-220. |
[15] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||