Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (10): 275-287.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0446
Previous Articles Next Articles
LI Ming-kun(), BI Mei-ying, ZHANG Tian-hang, WU Xiang-yu, YANG Pei-ru, YING Ming()
Received:
2024-05-14
Online:
2024-10-26
Published:
2024-11-20
Contact:
YING Ming
E-mail:MingkunLee@outlook.com;ym@tjut.edu.cn
LI Ming-kun, BI Mei-ying, ZHANG Tian-hang, WU Xiang-yu, YANG Pei-ru, YING Ming. Restoration of Agricultural Function of Rhizobacteria by UgRNA/Cas9 Multi-gene Editing[J]. Biotechnology Bulletin, 2024, 40(10): 275-287.
名称Name | UgRNA序列 UgRNA sequence(5'-3') | 相似度 Similarity/% |
---|---|---|
Cac: | AAACTGTAAGCGTTATCAATACGC | 70 |
AAAAGCGTATTGATAACGCTTACA | ||
Cpt : | AAACCGCAACCAAAGCTTCAGATT | 70 |
AAAAAATCTGAAGCTTTGGTTGCG | ||
Cax : | AAACGAAAGCGTTACCAGCAATAG | 55 |
AAAACTATTGCTGGTAACGCTTTC |
Table 1 UgRNA oligonucleotide sequences
名称Name | UgRNA序列 UgRNA sequence(5'-3') | 相似度 Similarity/% |
---|---|---|
Cac: | AAACTGTAAGCGTTATCAATACGC | 70 |
AAAAGCGTATTGATAACGCTTACA | ||
Cpt : | AAACCGCAACCAAAGCTTCAGATT | 70 |
AAAAAATCTGAAGCTTTGGTTGCG | ||
Cax : | AAACGAAAGCGTTACCAGCAATAG | 55 |
AAAACTATTGCTGGTAACGCTTTC |
质粒Plasmid | 特性Characterization | 来源Source |
---|---|---|
pCas9 | Bacterial expression of Cas9 nuclease, tracrRNA and crRNA guide, E.coli | Addgene( |
pCas9-Cax | pCas9 derivate, containing crRNA of Cax | 本实验This study[ |
pCas9-Cac | pCas9 derivate, containing crRNA of Cac | 本实验This study[ |
pCas9-Cpt | pCas9 derivate, containing crRNA of Cpt | 本实验This study[ |
Table 2 Plasmids used in this study
质粒Plasmid | 特性Characterization | 来源Source |
---|---|---|
pCas9 | Bacterial expression of Cas9 nuclease, tracrRNA and crRNA guide, E.coli | Addgene( |
pCas9-Cax | pCas9 derivate, containing crRNA of Cax | 本实验This study[ |
pCas9-Cac | pCas9 derivate, containing crRNA of Cac | 本实验This study[ |
pCas9-Cpt | pCas9 derivate, containing crRNA of Cpt | 本实验This study[ |
引物Primer | 序列 Sequence(5'-3') | 引物Primer | 序列 Sequence(5'-3') | |
---|---|---|---|---|
glpFKD-F | GTGCTATGGAAAAAAGCATGGAGT | glpFKD-R | TAAATGCGCTCCGCTGATTCC | |
ptsGHI-F | CTGCAGATTCTGGAATTCACGCAC | ptsGHI-R | AGATAGTGATTGTAGCACCTTTCGC | |
ykgB-F | TCCACTGTTCCTTTTGGTCTTCC | ykgB-R | TTCTCAATCTGCTGCTTGTCCG | |
crr-F | GCTCAAGCCCTGAGAGTGTT | crr-R | GCTCGAATACGAGGAAGTTGT | |
fsa-F | CTGCACTGACAGAACCTGATACCA | fsa-R | GGAAGAAATCGGTAAAATGACAGGTC | |
fbaA-F | ATGTAGCGTCCTGCTCCTTCA | fbaA-R | CCGTGTCATCATTATGACAGCC | |
eno-F | CAGGATCGTTCTTTTCTTCACCA | eno-R | GAAGGCAGCATGGTGAAAGTC | |
gap-F | GCATAACTGTGAGAAGAATCTGGC | gap-R | CTTGTTTTCCGTACACCGCTTT | |
tkt-F | GAGACCGGTTTGTCAGACGC | tkt-R | GATGCTCAGGTTGTATCCGCTTA | |
pdhABCD-F | CCAAGTTGAAGACAGTGAACCGT | pdhABCD-R | TACGACTTCGCCTTTTTCGTTT | |
pgi-F | GGGCAAATTCTTCGCGATCA | pgi-R | CATACACTCGATCACAATGTGG | |
guaB-F | TTCTCGATGTTACACCATGCGC | guaB-R | GATACCAAGACCACCTTGACGT | |
tenA-F | CATGCTCAGGGAGTTTCCGTTTA | tenA-R | CAATATCTCTTCGAATCGTCCGC | |
ribA-F | CCTGGTCGATGGATCAGGGA | ribA-R | GGTGCGAAGGCATACCACTTA | |
ribBD-F | CGCTTAGGGCCTGTCAGAAG | ribBD-R | TTCCGCCACCTTTCAGTTCT | |
crtNIM-F | ACGGAAGGAGCTTCCTTTCA | crtNIM-R | ATGAAAGCTGCGGAAGTGCT | |
crtP-F | CAGGCTTCTATCCGTTTCTCCT | crtP-R | GGTATGGCTTTTTCCACAGGGG | |
glk-F | CCATTCCAATCCCAATCAGCG | glk-R | GGAGAGACAGCGAAAGCAGAG | |
glmS-F | GATCACCCGCTACATTGTGATTGAC | glmS-R | TTTGATGCGGATGCGCATTTAGA | |
glmM-F | GAAGCAGCCGAATCTCGTCG | glmM-R | CGAGATACGCACTTCCCATC | |
glmU-F | GGAGAGTTTCGCGACATTGCA | glmU-R | CCCAGCTGTTCTTCTTGAAGTG | |
murA-F | GGCGAGCGGAGAAGATTCTT | murA-R | GAGGGAACCAGTTCTCCGTA | |
murC-F | GGACAGTATACCCAGTATCATG | murC-R | CGAACAGGAGGAATTAATGCT | |
murD-F | GGCTCAAATCGCTGTGAAATATG | murD-R | CCGTAACCAAGTGTGACAAATAAC | |
murE-F | GGGATAGCCTGCCTGAGATG | murE-R | GCCTGTGATCCCTATGAGATTC | |
murGB-F | GGAGAGGCATACGAATAGCACT | murGB-R | TAGAAGCCGCATAAACCACAGG | |
accAD-F | GGTTTTCTGAGATCAGGTGC | accAD-R | AGTGTGCACGTTCTTTCTGA | |
srfA-F | GCGGTATTTAGTCGATTATTTTCGG | srfA-R | AAGGGAGTCAGTTTGACGAATGTAC | |
bacABCDF-F | GCAGGACTACTGATCATGGCT | bacABCDF-R | GCCGAGTGTAGTGGTGGAATG | |
bacG-F | CTATTGCCGCAAAGGCCTCA | bacG-R | GCGTGAGGGTTCTCCTACAAAG | |
aroA-F | CGCTGCTATGACACCTGACT | aroA-R | CCAACGTCTTTACGTATTACGGT | |
aroBC-F | GCGCTGATTGCAGCACTTTATC | aroBC-R | GCCAAGGTGTTCATCAAATGAGC | |
aroG-F | CTTCTTGAAGTTCTAGACCTGCTT | aroG-R | CAAGAGTTTGAAGCATTTGCGTCT | |
liaGFRS-F | GCTTCCACCCGTAATCTTCACAT | liaGFRS-R | GCAGCAGTTAGAAACGAAGC | |
liaHI-F | GCCACTTCACCATTGATCATCG | liaHI-R | GGCGCAGCTCTCTTACATGT |
Table 3 Primers used in this study
引物Primer | 序列 Sequence(5'-3') | 引物Primer | 序列 Sequence(5'-3') | |
---|---|---|---|---|
glpFKD-F | GTGCTATGGAAAAAAGCATGGAGT | glpFKD-R | TAAATGCGCTCCGCTGATTCC | |
ptsGHI-F | CTGCAGATTCTGGAATTCACGCAC | ptsGHI-R | AGATAGTGATTGTAGCACCTTTCGC | |
ykgB-F | TCCACTGTTCCTTTTGGTCTTCC | ykgB-R | TTCTCAATCTGCTGCTTGTCCG | |
crr-F | GCTCAAGCCCTGAGAGTGTT | crr-R | GCTCGAATACGAGGAAGTTGT | |
fsa-F | CTGCACTGACAGAACCTGATACCA | fsa-R | GGAAGAAATCGGTAAAATGACAGGTC | |
fbaA-F | ATGTAGCGTCCTGCTCCTTCA | fbaA-R | CCGTGTCATCATTATGACAGCC | |
eno-F | CAGGATCGTTCTTTTCTTCACCA | eno-R | GAAGGCAGCATGGTGAAAGTC | |
gap-F | GCATAACTGTGAGAAGAATCTGGC | gap-R | CTTGTTTTCCGTACACCGCTTT | |
tkt-F | GAGACCGGTTTGTCAGACGC | tkt-R | GATGCTCAGGTTGTATCCGCTTA | |
pdhABCD-F | CCAAGTTGAAGACAGTGAACCGT | pdhABCD-R | TACGACTTCGCCTTTTTCGTTT | |
pgi-F | GGGCAAATTCTTCGCGATCA | pgi-R | CATACACTCGATCACAATGTGG | |
guaB-F | TTCTCGATGTTACACCATGCGC | guaB-R | GATACCAAGACCACCTTGACGT | |
tenA-F | CATGCTCAGGGAGTTTCCGTTTA | tenA-R | CAATATCTCTTCGAATCGTCCGC | |
ribA-F | CCTGGTCGATGGATCAGGGA | ribA-R | GGTGCGAAGGCATACCACTTA | |
ribBD-F | CGCTTAGGGCCTGTCAGAAG | ribBD-R | TTCCGCCACCTTTCAGTTCT | |
crtNIM-F | ACGGAAGGAGCTTCCTTTCA | crtNIM-R | ATGAAAGCTGCGGAAGTGCT | |
crtP-F | CAGGCTTCTATCCGTTTCTCCT | crtP-R | GGTATGGCTTTTTCCACAGGGG | |
glk-F | CCATTCCAATCCCAATCAGCG | glk-R | GGAGAGACAGCGAAAGCAGAG | |
glmS-F | GATCACCCGCTACATTGTGATTGAC | glmS-R | TTTGATGCGGATGCGCATTTAGA | |
glmM-F | GAAGCAGCCGAATCTCGTCG | glmM-R | CGAGATACGCACTTCCCATC | |
glmU-F | GGAGAGTTTCGCGACATTGCA | glmU-R | CCCAGCTGTTCTTCTTGAAGTG | |
murA-F | GGCGAGCGGAGAAGATTCTT | murA-R | GAGGGAACCAGTTCTCCGTA | |
murC-F | GGACAGTATACCCAGTATCATG | murC-R | CGAACAGGAGGAATTAATGCT | |
murD-F | GGCTCAAATCGCTGTGAAATATG | murD-R | CCGTAACCAAGTGTGACAAATAAC | |
murE-F | GGGATAGCCTGCCTGAGATG | murE-R | GCCTGTGATCCCTATGAGATTC | |
murGB-F | GGAGAGGCATACGAATAGCACT | murGB-R | TAGAAGCCGCATAAACCACAGG | |
accAD-F | GGTTTTCTGAGATCAGGTGC | accAD-R | AGTGTGCACGTTCTTTCTGA | |
srfA-F | GCGGTATTTAGTCGATTATTTTCGG | srfA-R | AAGGGAGTCAGTTTGACGAATGTAC | |
bacABCDF-F | GCAGGACTACTGATCATGGCT | bacABCDF-R | GCCGAGTGTAGTGGTGGAATG | |
bacG-F | CTATTGCCGCAAAGGCCTCA | bacG-R | GCGTGAGGGTTCTCCTACAAAG | |
aroA-F | CGCTGCTATGACACCTGACT | aroA-R | CCAACGTCTTTACGTATTACGGT | |
aroBC-F | GCGCTGATTGCAGCACTTTATC | aroBC-R | GCCAAGGTGTTCATCAAATGAGC | |
aroG-F | CTTCTTGAAGTTCTAGACCTGCTT | aroG-R | CAAGAGTTTGAAGCATTTGCGTCT | |
liaGFRS-F | GCTTCCACCCGTAATCTTCACAT | liaGFRS-R | GCAGCAGTTAGAAACGAAGC | |
liaHI-F | GCCACTTCACCATTGATCATCG | liaHI-R | GGCGCAGCTCTCTTACATGT |
Fig. 1 Comparative transcriptomic analysis of B. pumilus LG3145 A: Enriching analysis in KEGG metabolic pathways of strain LG3145 in GYMM. Down: Downregulated; Up: upregulated. B: Eomparative analysis of whole-genome expression of strain LG3145. GLY_WT: WT in GUMM; GLY_LG3145: LG3145 in GYMM; GLU_LG3145: LG3145 in GUMM. High: High expression(FPKM ≥ 900). Medium: Medium expression(500 ≤ FPKM < 900). Low: Low expression(50 ≤ FPKM < 500). No-expression: No expression(1 < FPKM < 50)
Gene or operon | cre-like and flanking sequenceab | TxSSc | Gene or operon | cre-like and flanking sequenceab | TxSSc | |
---|---|---|---|---|---|---|
ackA | TATCG ATGTAAGCGGTAACA[0,0]GTTCA | -52 | sucC | TTAAA ATGAAAGCGCAGTCT[0,0]ATTTT | -6 | |
glpFKD | AGAGG ATGAAAACGTTGTCA[0,0]ATAAA | -190 | glk | CAATT TTAAAGCGAAACA[2,0]ATATA | -330 | |
ATTTA AAGAAATCCTCGCA[1,0]TATCA | 81 | glmS | TGTTG ATGCAAACGTAGCT[1,0]CTTCA | -259 | ||
ptsGHI | TAACT ATGAAATGATGTCA[1,0]GGGAG | -66 | glmM | CTCTT TAGGACGCTCTT[3,0]TTCTA | -191 | |
ykgB | AAATA TCAAACGGTTTCT[0,2]CAAAT | -148 | glmU | ACAGC ATTTAAAGAAACA[0,2]TCCAT | -157 | |
crr | CGTGT ATGAAACTACGCT[0,2]CATAC | -45 | murA | CAAGG AAGAAATGCTGACT[0,1]GCAGA | -189 | |
fsa | ATCTT AGAAAGCGCAATCA[1,0]AATTT | -59 | TGCAA TAGCAATGGTAATGA[0,2]GCATC | -214 | ||
fbaA | AGGTT TTGCAAAGTGTCA[0,2]AAGCA | -261 | murC | CAATT TTGGAATGGACGCT[1,0]TTTCG | -248 | |
ATCCA AAGAATCGGTGCT[2,0]TGACA | -276 | mraY/murD | CCATC AAAAATGCATTCA[0,2]TTATT | -56 | ||
eno/gpm/tpi/pgk | AAATA AAAAACCGTTCACA[1,0]GTTTT | 211 | murE | AGCCA TTGTACGAACAC[3,0]CTCTT | 193 | |
gap/cggR | AAGAG TTGAAAAGAAAGT[2,0]TATCC | -130 | murGB | TTGTT TAGAAAACGTTAT[2,0]TTGAC | -110 | |
CATGG ATGAATCTTCAT[3,0]ATAGA | -255 | TTATT TTGCAAAGTATAA[2,0]AAAAT | -161 | |||
tkt | GATAA TAAAAACGGTCTCT[0,1]GTTAA | 171 | TGCTG AAGCAAGAAACCA[2,0]TGTTG | -190 | ||
pdhABCD | ATGTT TGAAACGATCCCA[2,0]GTGGC | -127 | pyk/pfkA/accAD | GACAT TTGCAAAGAATGCA[1,0]AAACA | 189 | |
pgi | GGAAC TAGCATGAAATCA[0,2]AGTAA | -67 | srfA | GGAGG ATGAAAAGAATACA[1,0]GTTTA | -6 | |
GGCTT TTAAATCGCTAAA[0,2]TGTCA | -155 | bacABCDF | ACACA TTGAAACGTAAGCT[1,0]CCATT | -161 | ||
guaB | AAATA AAAAACCGTTCACA[1,0]GTTTT | -259 | bacG | AAACA AAGGAACCGGTGTCT[0,0]CTTTT | 189 | |
tenA | GTCGT ATGTAAGCTCACT[0,2]AATCG | 183 | AGGGA TTGGAAAGCAATC[2,0]CCATA | 70 | ||
ribA | CGACT AGGAAGCGCAGTA[0,2]TGGTG | -83 | GTGTA CGATGGCCATGAT[0,2]CCGCT | -235 | ||
ribBD | ATAAA AAGGCAAGACGCT[0,2]CAAAG | 58 | aroA | CATTG TACCAACTCATCA[2,0]TATAA | -68 | |
crtNIM | AACGA TAGAAACGCAAAT[2,0]GGATC | 389 | aroBC | GAGAT TGAAGCGTTCCG[2,0]GCTGC | 126 | |
TCGTC TTGGAAACAATCT[0,2]ATACA | 273 | GCGCA ATGAAACGAAGTT[2,0]AACGT | 77 | |||
AATGT AAGAAAGCGCCCT[2,0]TTATT | -145 | aroG | GATCA ATGAAAGGGAAACA[1,0]TTGTA | 73 | ||
crtP | AAGAA TTTAAACGATCCA[2,0]AGGAC | -71 | liaGFRS | AAACT AAGAAATCGAGACA[0,1]GGTCG | -113 | |
AAGGA TATGACGCGATCT[2,0]TGGCG | -165 | liaHI | ATCCA ATAAAAGCACTCT[0,2]TCAAT | -143 | ||
Consensus WWGNAANCGNWNNCW(W:A /T, N:A/T/G/C) |
Table 4 Prediction of CRE sites in some operons in B. pumilus WT
Gene or operon | cre-like and flanking sequenceab | TxSSc | Gene or operon | cre-like and flanking sequenceab | TxSSc | |
---|---|---|---|---|---|---|
ackA | TATCG ATGTAAGCGGTAACA[0,0]GTTCA | -52 | sucC | TTAAA ATGAAAGCGCAGTCT[0,0]ATTTT | -6 | |
glpFKD | AGAGG ATGAAAACGTTGTCA[0,0]ATAAA | -190 | glk | CAATT TTAAAGCGAAACA[2,0]ATATA | -330 | |
ATTTA AAGAAATCCTCGCA[1,0]TATCA | 81 | glmS | TGTTG ATGCAAACGTAGCT[1,0]CTTCA | -259 | ||
ptsGHI | TAACT ATGAAATGATGTCA[1,0]GGGAG | -66 | glmM | CTCTT TAGGACGCTCTT[3,0]TTCTA | -191 | |
ykgB | AAATA TCAAACGGTTTCT[0,2]CAAAT | -148 | glmU | ACAGC ATTTAAAGAAACA[0,2]TCCAT | -157 | |
crr | CGTGT ATGAAACTACGCT[0,2]CATAC | -45 | murA | CAAGG AAGAAATGCTGACT[0,1]GCAGA | -189 | |
fsa | ATCTT AGAAAGCGCAATCA[1,0]AATTT | -59 | TGCAA TAGCAATGGTAATGA[0,2]GCATC | -214 | ||
fbaA | AGGTT TTGCAAAGTGTCA[0,2]AAGCA | -261 | murC | CAATT TTGGAATGGACGCT[1,0]TTTCG | -248 | |
ATCCA AAGAATCGGTGCT[2,0]TGACA | -276 | mraY/murD | CCATC AAAAATGCATTCA[0,2]TTATT | -56 | ||
eno/gpm/tpi/pgk | AAATA AAAAACCGTTCACA[1,0]GTTTT | 211 | murE | AGCCA TTGTACGAACAC[3,0]CTCTT | 193 | |
gap/cggR | AAGAG TTGAAAAGAAAGT[2,0]TATCC | -130 | murGB | TTGTT TAGAAAACGTTAT[2,0]TTGAC | -110 | |
CATGG ATGAATCTTCAT[3,0]ATAGA | -255 | TTATT TTGCAAAGTATAA[2,0]AAAAT | -161 | |||
tkt | GATAA TAAAAACGGTCTCT[0,1]GTTAA | 171 | TGCTG AAGCAAGAAACCA[2,0]TGTTG | -190 | ||
pdhABCD | ATGTT TGAAACGATCCCA[2,0]GTGGC | -127 | pyk/pfkA/accAD | GACAT TTGCAAAGAATGCA[1,0]AAACA | 189 | |
pgi | GGAAC TAGCATGAAATCA[0,2]AGTAA | -67 | srfA | GGAGG ATGAAAAGAATACA[1,0]GTTTA | -6 | |
GGCTT TTAAATCGCTAAA[0,2]TGTCA | -155 | bacABCDF | ACACA TTGAAACGTAAGCT[1,0]CCATT | -161 | ||
guaB | AAATA AAAAACCGTTCACA[1,0]GTTTT | -259 | bacG | AAACA AAGGAACCGGTGTCT[0,0]CTTTT | 189 | |
tenA | GTCGT ATGTAAGCTCACT[0,2]AATCG | 183 | AGGGA TTGGAAAGCAATC[2,0]CCATA | 70 | ||
ribA | CGACT AGGAAGCGCAGTA[0,2]TGGTG | -83 | GTGTA CGATGGCCATGAT[0,2]CCGCT | -235 | ||
ribBD | ATAAA AAGGCAAGACGCT[0,2]CAAAG | 58 | aroA | CATTG TACCAACTCATCA[2,0]TATAA | -68 | |
crtNIM | AACGA TAGAAACGCAAAT[2,0]GGATC | 389 | aroBC | GAGAT TGAAGCGTTCCG[2,0]GCTGC | 126 | |
TCGTC TTGGAAACAATCT[0,2]ATACA | 273 | GCGCA ATGAAACGAAGTT[2,0]AACGT | 77 | |||
AATGT AAGAAAGCGCCCT[2,0]TTATT | -145 | aroG | GATCA ATGAAAGGGAAACA[1,0]TTGTA | 73 | ||
crtP | AAGAA TTTAAACGATCCA[2,0]AGGAC | -71 | liaGFRS | AAACT AAGAAATCGAGACA[0,1]GGTCG | -113 | |
AAGGA TATGACGCGATCT[2,0]TGGCG | -165 | liaHI | ATCCA ATAAAAGCACTCT[0,2]TCAAT | -143 | ||
Consensus WWGNAANCGNWNNCW(W:A /T, N:A/T/G/C) |
Fig. 2 KEGG enrichment pathways analysis of altered metabolites and genes when LG3145 used glycerol as carbon source A: Enriched altered metabolite pathways. B: Enriched altered gene pathways. The bubble size indicates significance. The red reverse arrow indicates the same enrichment pathway. The blue and green arrows in the same direction indicate associated metabolic pathways.(P-value < 0.05,|log2 fold-change(FC)| ≥ 1)
Fig. 3 Chromatograms of the DNA sequencing of CRE sites : CRE sites; : distinct mutation bases or mismatch site with the consenus sequences “ WWGNAANCGNWNNCW (W:A/T, N:A/T/G/C) ”; : the direction of transcription
病原体Pathogen | 直径Diameter/cm | 抑制率 Inhibition/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | |||||||||||||
EG | CK1 | CK2 | EG | CK1 | CK2 | EG | CK1 | CK2 | *CK | **EG | |||||
F. Sheld | 0.70±0.07 | 0.70±0.02 | 0.70±0.03 | 0.80±0.06 | 1.25±0.05 | 0.96±0.05 | 0.95±0.04 | 2.10±0.13 | 1.15±0.08 | 45 | 55 | ||||
H. Pass | 0.70±0.06 | 0.75±0.14 | 0.75±0.05 | 0.80±0.04 | 2.10±0.04 | 2.03±0.09 | 0.80±0.11 | 2.75±0.05 | 2.45±0.07 | 11 | 71 | ||||
S. Weber | 0.60±0.13 | 0.75±0.10 | 0.68±0.11 | 0.65±0.12 | 1.55±0.08 | 1.65±0.06 | 0.75±0.12 | 3.30±0.07 | 2.90±0.04 | 12 | 77 | ||||
B. Pers | 0.75±0.11 | 3.25±0.11 | 1.19±0.16 | 1.15±0.09 | 4.80±0.12 | 3.43±0.03 | 1.45±0.07 | 6.90±0.09 | 4.21±0.09 | 39 | 79 | ||||
F. graminearum | 1.10±0.10 | 1.10±0.13 | 1.10±0.15 | 1.95±0.13 | 3.35±0.05 | 1.69±0.12 | 2.50±0.10 | 5.80±0.03 | 3.77±0.05 | 35 | 57 | ||||
R. solaniKühn | 0.85±0.12 | 1.70±0.12 | 0.95±0.04 | 0.90±0.15 | 2.50±0.07 | 1.24±0.07 | 1.25±0.06 | 3.10±0.10 | 2.36±0.03 | 24 | 60 | ||||
Average inhibition | 28 | 67 |
Table 5 Inhibition to fungal pathogens by LG3145
病原体Pathogen | 直径Diameter/cm | 抑制率 Inhibition/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | |||||||||||||
EG | CK1 | CK2 | EG | CK1 | CK2 | EG | CK1 | CK2 | *CK | **EG | |||||
F. Sheld | 0.70±0.07 | 0.70±0.02 | 0.70±0.03 | 0.80±0.06 | 1.25±0.05 | 0.96±0.05 | 0.95±0.04 | 2.10±0.13 | 1.15±0.08 | 45 | 55 | ||||
H. Pass | 0.70±0.06 | 0.75±0.14 | 0.75±0.05 | 0.80±0.04 | 2.10±0.04 | 2.03±0.09 | 0.80±0.11 | 2.75±0.05 | 2.45±0.07 | 11 | 71 | ||||
S. Weber | 0.60±0.13 | 0.75±0.10 | 0.68±0.11 | 0.65±0.12 | 1.55±0.08 | 1.65±0.06 | 0.75±0.12 | 3.30±0.07 | 2.90±0.04 | 12 | 77 | ||||
B. Pers | 0.75±0.11 | 3.25±0.11 | 1.19±0.16 | 1.15±0.09 | 4.80±0.12 | 3.43±0.03 | 1.45±0.07 | 6.90±0.09 | 4.21±0.09 | 39 | 79 | ||||
F. graminearum | 1.10±0.10 | 1.10±0.13 | 1.10±0.15 | 1.95±0.13 | 3.35±0.05 | 1.69±0.12 | 2.50±0.10 | 5.80±0.03 | 3.77±0.05 | 35 | 57 | ||||
R. solaniKühn | 0.85±0.12 | 1.70±0.12 | 0.95±0.04 | 0.90±0.15 | 2.50±0.07 | 1.24±0.07 | 1.25±0.06 | 3.10±0.10 | 2.36±0.03 | 24 | 60 | ||||
Average inhibition | 28 | 67 |
Fig. 4 Inhibition assay of strain LG3145 to plant pathogens A: LG3145 experimental group; B: Blank control group; C: Wild-type strain control group. 1: Fusarium moniliforme Sheldon; 2: Helminthosporium turcicum Pass;3: Stemphylium solani Weber; 4: Botrytis cinerea Pers; 5: Fusarium graminearum;6: Rhizoctonia solani Kühn
Fig. 5 Effects of strain LG3145 on the growth and development of wheat plants A: Freezedried powder of strain LG3145 and WT. B: Wheat cultivation comparative experiment. C: Comparative analysis of wheat shoots after 9 days. CK1: Blank control group with sterile water-irrigation; CK2: WT-irrigated control group
方法Treatment | 株高Plant height/cm | 株重Shoot weight/g | |||||
---|---|---|---|---|---|---|---|
Day 4 | Day 5 | Day 6 | Day 7 | Day 8 | Day 9 | ||
LG3145 | 2.21±0.11 | 5.83±0.17** | 7.63±0.22** | 9.81±0.52** | 11.81±0.44** | 12.61±0.46** | 2.81±0.11** |
CK1 | 2.21±0.11 | 4.12±0.30 | 5.23±0.33 | 7.04±0.28 | 8.82±0.19 | 9.62±0.22 | 2.33±0.07 |
CK2 | 2.13±0.09 | 4.81±0.33* | 6.21±0.44* | 8.42±0.54* | 10.01±0.48* | 11.03±0.49** | 2.65±0.09** |
Table 6 Effects of LG3145 on biological characteristics of wheat seedlings
方法Treatment | 株高Plant height/cm | 株重Shoot weight/g | |||||
---|---|---|---|---|---|---|---|
Day 4 | Day 5 | Day 6 | Day 7 | Day 8 | Day 9 | ||
LG3145 | 2.21±0.11 | 5.83±0.17** | 7.63±0.22** | 9.81±0.52** | 11.81±0.44** | 12.61±0.46** | 2.81±0.11** |
CK1 | 2.21±0.11 | 4.12±0.30 | 5.23±0.33 | 7.04±0.28 | 8.82±0.19 | 9.62±0.22 | 2.33±0.07 |
CK2 | 2.13±0.09 | 4.81±0.33* | 6.21±0.44* | 8.42±0.54* | 10.01±0.48* | 11.03±0.49** | 2.65±0.09** |
[1] | Schippers B, Bakker AW, Bakker PM. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annu Rev Phytopathol, 1987, 25: 339-358. |
[2] | Zhang N, Nunan N, Hirsch PR, et al. Theory of microbial coexistence in promoting soil-plant ecosystem health[J]. Biol Fertil Soils, 2021, 57(7): 897-911. |
[3] |
Gao CX. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057 |
[4] | Zhang XJ, Huang YJ, Harvey PR, et al. Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene Chi113[J]. Biotechnol Lett, 2012, 34(2): 287-293. |
[5] | Peng G, Zhao X, Li Y, et al. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana[J]. Microbiol Res, 2019, 227: 126297. |
[6] | Yi YL, Li ZB, Song CX, et al. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system[J]. Environ Microbiol, 2018, 20(12): 4245-4260. |
[7] |
Liu X, Wu SR, Xu J, et al. Application of CRISPR/Cas9 in plant biology[J]. Acta Pharm Sin B, 2017, 7(3): 292-302.
doi: 10.1016/j.apsb.2017.01.002 pmid: 28589077 |
[8] | 周桓, 邵艳娜, 王涓, 等. 基于CRISPR/Cas技术的核酸检测研究进展[J]. 微生物学报, 2021, 61(12): 3856-3869. |
Zhou H, Shao YN, Wang J, et al. Research progress of nucleic acid detection based on CRISPR/Cas technology[J]. Acta Microbiol Sin, 2021, 61(12): 3856-3869. | |
[9] |
Walker TS, Bais HP, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plant Physiol, 2003, 132(1): 44-51.
doi: 10.1104/pp.102.019661 pmid: 12746510 |
[10] |
Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, et al. Identification and characterization of endophytic bacteria from corn(Zea mays L.) roots with biotechnological potential in agriculture[J]. AMB Express, 2014, 4: 26.
doi: 10.1186/s13568-014-0026-y pmid: 24949261 |
[11] | Franzino T, Boubakri H, Cernava T, et al. Implications of carbon catabolite repression for plant-microbe interactions[J]. Plant Commun, 2021, 3(2): 100272. |
[12] |
Nicholson WL, Park YK, Henkin TM, et al. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence[J]. J Mol Biol, 1987, 198(4): 609-618.
pmid: 3123701 |
[13] | Wang YX, Cao LF, Bi MY, et al. Wobble editing of Cre-box by unspecific CRISPR/Cas9 causes CCR release and phenotypic changes in Bacillus pumilus[J]. Front Chem, 2021, 9: 717609. |
[14] | 陈启民, 耿运琪, 倪津, 等. 短小芽胞杆菌作为芽胞杆菌属基因工程受体菌的研究[J]. 遗传学报, 1989, 16(3): 206-212. |
Chen QM, Geng YQ, Ni J, et al. Bacillus subtilis as a receptor bacterium for genetic engineering of the genus Bacillus[J]. Journal of Genetics, 1989, 16(3): 206-212. | |
[15] |
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4): 357-359.
doi: 10.1038/nmeth.1923 pmid: 22388286 |
[16] |
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323.
doi: 10.1186/1471-2105-12-323 pmid: 21816040 |
[17] | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. |
[18] |
Wang LK, Feng ZX, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138.
doi: 10.1093/bioinformatics/btp612 pmid: 19855105 |
[19] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[20] |
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[21] |
Miwa Y, Nakata A, Ogiwara A, et al. Evaluation and characterization of catabolite-responsive elements(cre)of Bacillus subtilis[J]. Nucleic Acids Res, 2000, 28(5): 1206-1210.
pmid: 10666464 |
[22] | Rojas-Pirela M, Andrade-Alviárez D, Rojas V, et al. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea[J]. Open Biol, 2020, 10(11): 200302. |
[23] | Wu Q, Shabbir MAB, Peng DP, et al. Microbiological inhibition-based method for screening and identifying of antibiotic residues in milk, chicken egg and honey[J]. Food Chem, 2021, 363: 130074. |
[24] |
Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis[J]. Curr Opin Microbiol, 2021, 63: 10-18.
doi: 10.1016/j.mib.2021.05.007 pmid: 34102567 |
[25] | Ahsan T, Tian PC, Gao J, et al. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system[J]. J Adv Res, 2023: S 2090-S1232(23)00367-3. |
[26] | Zhang JL, Li CX, Zhang WJ, et al. Wheat plant height locus RHT25 encodes a PLATZ transcription factor that interacts with DELLA(RHT1)[J]. Proc Natl Acad Sci USA, 2023, 120(19): e2300203120. |
[27] |
李元召, 孙俊良, 梁新红, 等. 重组枯草芽胞杆菌PaE菌株的构建及碳代谢阻遏效应研究[J]. 食品科学, 2014, 35(23): 134-138.
doi: 10.7506/spkx1002-6630-201423027 |
Li YZ, Sun JL, Liang XH, et al. Construction and carbon catabolite repression of recombinant Bacillus subtilis PaE[J]. Food Sci, 2014, 35(23): 134-138. | |
[28] | Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biol Biochem, 2010, 42(5): 669-678. |
[29] | 邓嘉雯, 高云雨, 刘旭坤, 等. 多靶向沉默里氏木霉碳代谢阻遏物对纤维素酶活性和表达的调控研究[J]. 微生物学报, 2019, 59(4): 730-743. |
Deng JW, Gao YY, Liu XK, et al. Cellulase activities and expression regulation by multiple targeted silencing carbon catabolic repressors in Trichoderma reesei[J]. Acta Microbiol Sin, 2019, 59(4): 730-743. | |
[30] |
Chen C, Lu YQ, Wang LL, et al. CcpA-dependent carbon catabolite repression regulates fructooligosaccharides metabolism in Lactobacillus plantarum[J]. Front Microbiol, 2018, 9: 1114.
doi: 10.3389/fmicb.2018.01114 pmid: 29896178 |
[31] | Huang YF, Lemieux MJ, Song JM, et al. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli[J]. Science, 2003, 301(5633): 616-620. |
[32] |
Kimata K, Tanaka Y, Inada T, et al. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli[J]. EMBO J, 2001, 20(13): 3587-3595.
pmid: 11432845 |
[33] | 董悦, 胡坤乐, 李兴林, 等. 代谢工程改造甘油代谢途径提高β-胡萝卜素产量[J]. 生物工程学报, 2017, 33(2): 247-260. |
Dong Y, Hu KL, Li XL, et al. Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway[J]. Chinese Journal of Biotechnology, 2017, 33(2): 247-260.
doi: 10.13345/j.cjb.160275 pmid: 28956381 |
[1] | NIE Zhu-xin, GUO Jin, QIAO Zi-yang, LI Wei-wei, ZHANG Xue-yan, LIU Chun-yang, WANG Jing. Transcriptome Analysis of the Anthocyanin Biosynthesis in the Fruit Development Processes of Lycium ruthenicum Murr. [J]. Biotechnology Bulletin, 2024, 40(8): 106-117. |
[2] | ZHOU Lin, HUANG Shun-man, SU Wen-kun, YAO Xiang, QU Yan. Identification of the bHLH Gene Family and Selection of Genes Related to Color Formation in Camellia reticulata [J]. Biotechnology Bulletin, 2024, 40(8): 142-151. |
[3] | GAO Meng-meng, ZHAO Tian-yu, JIAO Xin-yue, LIN Chun-jing, GUAN Zhe-yun, DING Xiao-yang, SUN Yan-yan, ZHANG Chun-bao. Comparative Transcriptome Analysis of Cytoplasmic Male Sterile Line and Its Restorer Line in Soybean [J]. Biotechnology Bulletin, 2024, 40(7): 137-149. |
[4] | LIAO Yang-mei, ZHAO Guo-chun, WENG Xue-huang, JIA Li-ming, CHEN Zhong. Transcriptome Sequencing of Male Sterile Buds at Different Developmental Stages in Sapindus mukorossi ‘Qirui’ [J]. Biotechnology Bulletin, 2024, 40(7): 197-206. |
[5] | BAI Zhi-yuan, XU Fei, YANG Wu, WANG Ming-gui, YANG Yu-hua, ZHANG Hai-ping, ZHANG Rui-jun. Transcriptome Analysis of Fertility Transformation in Weakly Restoring Hybrid F1 of Soybean Cytoplasmic Male Sterility [J]. Biotechnology Bulletin, 2024, 40(6): 134-142. |
[6] | WU Di, YOU Xiao-feng, ZHENG Yi-zheng, LIN Nan, ZHANG Yan-yan, WEI Yi-cong. Analysis of Endogenous Hormone Regulation Mechanism for Carotenoid Synthesis in Sarcandra glabra [J]. Biotechnology Bulletin, 2024, 40(5): 203-214. |
[7] | GUO Chun, SONG Gui-mei, YAN Yan, DI Peng, WANG Ying-ping. Genome Wide Identification and Expression Analysis of the bZIP Gene Family in Panax quinquefolius [J]. Biotechnology Bulletin, 2024, 40(4): 167-178. |
[8] | ZHONG Yun, LIN Chun, LIU Zheng-jie, DONG Chen-wen-hua, MAO Zi-chao, LI Xing-yu. Cloning and Prokaryotic Expression Analysis of Asparagus Saponin Synthesis Related Glycosyltransferase Genes [J]. Biotechnology Bulletin, 2024, 40(4): 255-263. |
[9] | YANG Qi, WEI Zi-di, SONG Juan, TONG Kun, YANG Liu, WANG Jia-han, LIU Hai-yan, LUAN Wei-jiang, MA Xuan. Construction and Transcriptomic Analysis of Rice Histone H1 Triple Mutant [J]. Biotechnology Bulletin, 2024, 40(4): 85-96. |
[10] | XIE Qian, JIANG Lai, HE Jin, LIU Ling-ling, DING Ming-yue, CHEN Qing-xi. Regulatory Genes Mining Related to Transcriptome Sequencing and Phenolic Metabolism Pathway of Canarium album Fruit with Different Fresh Food Quality [J]. Biotechnology Bulletin, 2024, 40(3): 215-228. |
[11] | LIANG Wan-feng, ZENG Jing-jing, HU Ruo-qun, CAO Jia-yu, ZHENG Tao, LI Luan, QIU Ming-yue, LIANG Xiao-ying, CHEN Ying. Transcriptional and Metabolomic Analysis of Carotenoid Accumulation in Anoectochilus roxburghii during Different Growth Periods [J]. Biotechnology Bulletin, 2024, 40(10): 262-274. |
[12] | JIAO Shuai, FU Yu-ze, CUI Kai, ZHANG Ji-xian, WANG Jie, BI Yan-liang, DIAO Qi-yu, ZHANG Jian-xin, ZHANG Nai-feng. Effects of Bacillus pumilus on the Intestinal Inflammation and Barrier Function of Goat Kids [J]. Biotechnology Bulletin, 2024, 40(1): 344-352. |
[13] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[14] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[15] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||