Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 33-41.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0536
Previous Articles Next Articles
SONG Qian-na1,2(), DUAN Yong-hong1, FENG Rui-yun1,2()
Received:
2024-06-07
Online:
2024-09-26
Published:
2024-10-12
Contact:
FENG Rui-yun
E-mail:songqianna1007@126.com;fengruiyun1970@163.com
SONG Qian-na, DUAN Yong-hong, FENG Rui-yun. Establishment of CRISPR/Cas9-mediated Highly Efficient Gene Editing System in Microtubers of Potatoes[J]. Biotechnology Bulletin, 2024, 40(9): 33-41.
蔗糖浓度 Sucrose concentration/% | 并薯6号 Bingshu No. 6 | 青薯9号 Qingshu No.9 | ||||
---|---|---|---|---|---|---|
单瓶平均薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | 单瓶平均薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | |||
6 | 0.17±0.40b | 0.02±0.04c | 0.20±0.45c | 0.02±0.03b | ||
8 | 2.83±1.17a | 0.29±0.19ab | 1.80±0.84ab | 0.19±0.06a | ||
10 | 3.50±1.64a | 0.48±0.20a | 2.60±1.34a | 0.28±0.13a | ||
12 | 0.67±0.82b | 0.09±0.10bc | 0.80±0.84bc | 0.05±0.05b | ||
15 | 0.67±1.03b | 0.06±0.11c | 0.40±0.55c | 0.02±0.03b |
Table 1 Micro tuberization under different sucrose concentrations for two potato varieties
蔗糖浓度 Sucrose concentration/% | 并薯6号 Bingshu No. 6 | 青薯9号 Qingshu No.9 | ||||
---|---|---|---|---|---|---|
单瓶平均薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | 单瓶平均薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | |||
6 | 0.17±0.40b | 0.02±0.04c | 0.20±0.45c | 0.02±0.03b | ||
8 | 2.83±1.17a | 0.29±0.19ab | 1.80±0.84ab | 0.19±0.06a | ||
10 | 3.50±1.64a | 0.48±0.20a | 2.60±1.34a | 0.28±0.13a | ||
12 | 0.67±0.82b | 0.09±0.10bc | 0.80±0.84bc | 0.05±0.05b | ||
15 | 0.67±1.03b | 0.06±0.11c | 0.40±0.55c | 0.02±0.03b |
不同激素配比 Different hormone combination | 并薯6号 Bingshu No. 6 | 青薯9号 Qingshu No.9 | ||||
---|---|---|---|---|---|---|
单瓶平均薯数/粒Number of microtubers per bottle | 单瓶平均薯重Weight of microtubers per bottle/g | 单瓶平均薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | |||
0 | 3.50±1.64a | 0.48±0.20a | 2.60±1.34a | 0.28±0.13a | ||
4 mg/L 6-BA | 0.67±0.58b | 0.04±0.03b | 0.33±0.58b | 0.02±0.03b | ||
4 mg/L 6-BA + 3.5 mg/L NAA | 0.67±0.58b | 0.03±0.03b | 0.00±0.00b | 0.00±0.00b | ||
5 mg/L KT | 4.67±0.58a | 0.62±0.07a | 3.30±0.82a | 0.37±0.15a |
Table 2 Micro tuberization under different hormone combinations for two potato varieties
不同激素配比 Different hormone combination | 并薯6号 Bingshu No. 6 | 青薯9号 Qingshu No.9 | ||||
---|---|---|---|---|---|---|
单瓶平均薯数/粒Number of microtubers per bottle | 单瓶平均薯重Weight of microtubers per bottle/g | 单瓶平均薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | |||
0 | 3.50±1.64a | 0.48±0.20a | 2.60±1.34a | 0.28±0.13a | ||
4 mg/L 6-BA | 0.67±0.58b | 0.04±0.03b | 0.33±0.58b | 0.02±0.03b | ||
4 mg/L 6-BA + 3.5 mg/L NAA | 0.67±0.58b | 0.03±0.03b | 0.00±0.00b | 0.00±0.00b | ||
5 mg/L KT | 4.67±0.58a | 0.62±0.07a | 3.30±0.82a | 0.37±0.15a |
品种 Variety | 处理 Treatment | 单瓶平均结薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | 大薯重Weight of the large tuber/g | 大薯直径 Diameter of the large tuber/cm |
---|---|---|---|---|---|
并薯6号 | 顶部1个节段 | 2.00±2.00a | 0.13±0.15a | 0.08±0.08ab | 0.43±0.38a |
底部1个节段 | 0.67±0.58a | 0.04±0.04a | 0.04±0.04b | 0.38±0.34a | |
顶部2个节段 | 3.33±0.58a | 0.23±0.05a | 0.09±0.05ab | 0.65±0.09a | |
底部2个节段 | 2.67±1.53a | 0.45±0.37a | 0.22±0.13a | 0.80±0.18a | |
青薯9号 | 顶部1个节段 | 1.33±2.16a | 0.10±0.20b | 0.02±0.04b | 0.18±0.29b |
底部1个节段 | 2.83±1.72a | 0.20±0.17ab | 0.10±0.07ab | 0.44±0.06ab | |
顶部2个节段 | 3.17±1.60a | 0.21±0.13ab | 0.10±0.04ab | 0.55±0.07a | |
底部2个节段 | 3.33±0.82a | 0.37±0.15a | 0.15±0.05a | 0.59±0.06a |
Table 3 Induction of tuberization under different segment lengths for two potato varieties
品种 Variety | 处理 Treatment | 单瓶平均结薯数Number of microtubers per bottle/粒 | 单瓶平均薯重Weight of microtubers per bottle/g | 大薯重Weight of the large tuber/g | 大薯直径 Diameter of the large tuber/cm |
---|---|---|---|---|---|
并薯6号 | 顶部1个节段 | 2.00±2.00a | 0.13±0.15a | 0.08±0.08ab | 0.43±0.38a |
底部1个节段 | 0.67±0.58a | 0.04±0.04a | 0.04±0.04b | 0.38±0.34a | |
顶部2个节段 | 3.33±0.58a | 0.23±0.05a | 0.09±0.05ab | 0.65±0.09a | |
底部2个节段 | 2.67±1.53a | 0.45±0.37a | 0.22±0.13a | 0.80±0.18a | |
青薯9号 | 顶部1个节段 | 1.33±2.16a | 0.10±0.20b | 0.02±0.04b | 0.18±0.29b |
底部1个节段 | 2.83±1.72a | 0.20±0.17ab | 0.10±0.07ab | 0.44±0.06ab | |
顶部2个节段 | 3.17±1.60a | 0.21±0.13ab | 0.10±0.04ab | 0.55±0.07a | |
底部2个节段 | 3.33±0.82a | 0.37±0.15a | 0.15±0.05a | 0.59±0.06a |
Fig. 1 Construction of CRISPR/Cas9 deletion vector A: Schematic diagram of pKSE402 vector. B: The target site in gene StuPPO2. Red is PAM sequence; blue is restriction enzyme site. C: Correct target sequence is confirmed by sequencing
品种Variety | 培养基类型Media types | 接种薯片数Microtubers/个 | 芽分化薯片数Differentiation microtubers/个 | 分化效率Differentiation efficiency/% |
---|---|---|---|---|
青薯9号 | K1 | 106 | 8 | 7.5 |
K2 | 94 | 39 | 41.5 | |
并薯6号 | K1 | 58 | 26 | 44.8 |
K2 | 63 | 22 | 34.9 |
Table 4 Induction and differentiation of microtuber for two potato varieties
品种Variety | 培养基类型Media types | 接种薯片数Microtubers/个 | 芽分化薯片数Differentiation microtubers/个 | 分化效率Differentiation efficiency/% |
---|---|---|---|---|
青薯9号 | K1 | 106 | 8 | 7.5 |
K2 | 94 | 39 | 41.5 | |
并薯6号 | K1 | 58 | 26 | 44.8 |
K2 | 63 | 22 | 34.9 |
Fig. 2 Agrobacterium-mediated potato microtuber genetic transformation system A: Induction of microtuber. B: Infection of microtuber thin slices. C: Induction of microtuber thin slices. D: Differentiation of buds. E: Rooting of regenerated plants. F: Positive regenerated plants are selected by GFP
品种 Variety | 再生植株 Regenarated plants/株 | 荧光植株 Fluorescent plants/株 | 转化效率 Transformation frequency/% | 突变植株数 Mutant plants/株 | 突变效率 Mutation frequency/% |
---|---|---|---|---|---|
青薯9号 | 54 | 28 | 51.9 | 23 | 82.1 |
并薯6号 | 46 | 19 | 41.3 | 12 | 63.2 |
Table 5 Identification and analysis of StuPPO2 gene editing for fluorescent regenerated plants
品种 Variety | 再生植株 Regenarated plants/株 | 荧光植株 Fluorescent plants/株 | 转化效率 Transformation frequency/% | 突变植株数 Mutant plants/株 | 突变效率 Mutation frequency/% |
---|---|---|---|---|---|
青薯9号 | 54 | 28 | 51.9 | 23 | 82.1 |
并薯6号 | 46 | 19 | 41.3 | 12 | 63.2 |
Fig. 3 Detection of StuPPO2 knockout plants A: PCR/RE assay for mutants. WT/D indicates that wild is cut by the enzyme; WT/U indicates that wild can not be cut by the enzyme; T0-1-T0-4 are mutant plants. B: Mutation type analysis of stuppo2 mutants. The PAM sequence is highlighted in red
品种 Variety | 结薯效率 Potato yield/% | 最适再生培养基 Optimal medium | 芽分化效率 Differentiation efficiency/% | 遗传转化频率 Transformation frequency/% | 基因编辑效率 Mutation frequency/% |
---|---|---|---|---|---|
Desiree | (48/48)100 | K1 | (27/104)25.9 | (9/28)32.1 | (3/9)33.3 |
晋薯16号 | (15/48)31.3 | K2 | (30/51)58.8 | (10/25)40.0 | (1/10)10 |
并薯26号 | (31/48)64.6 | K2 | (28/154)18.2 | (7/28)25.0 | (0/7)0 |
Table 6 Testing of gene editing system for another three tetraploid potato varieties
品种 Variety | 结薯效率 Potato yield/% | 最适再生培养基 Optimal medium | 芽分化效率 Differentiation efficiency/% | 遗传转化频率 Transformation frequency/% | 基因编辑效率 Mutation frequency/% |
---|---|---|---|---|---|
Desiree | (48/48)100 | K1 | (27/104)25.9 | (9/28)32.1 | (3/9)33.3 |
晋薯16号 | (15/48)31.3 | K2 | (30/51)58.8 | (10/25)40.0 | (1/10)10 |
并薯26号 | (31/48)64.6 | K2 | (28/154)18.2 | (7/28)25.0 | (0/7)0 |
[1] | Zaheer K, Akhtar MH. Potato production, usage, and nutrition—a review[J]. Crit Rev Food Sci Nutr, 2016, 56(5): 711-721. |
[2] | Scott G, Suárez V. The rise of Asia as the centre of global potato production and some implications for industry[J]. Potato J, 2012 |
[3] | Stemerding D, Beumer K, Edelenbosch R, et al. Responsible innovation in plant breeding: the case of hybrid potato breeding[J]. Plants, 2023, 12(9): 1751. |
[4] | Halterman D, Guenthner J, Collinge S, et al. Biotech potatoes in the 21st century: 20 years since the first biotech potato[J]. Am J Potato Res, 2016, 93(1): 1-20. |
[5] |
Wang HF, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond[J]. Annu Rev Biochem, 2016, 85: 227-264.
doi: 10.1146/annurev-biochem-060815-014607 pmid: 27145843 |
[6] | Consortium PGS, Xu X, Pan SK, et al. Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355): 189-195. |
[7] | Butler NM, Atkins PA, Voytas DF, et al. Generation and inheritance of targeted mutations in potato(Solanum tuberosum L.) using the CRISPR/cas system[J]. PLoS One, 2015, 10(12): e0144591. |
[8] |
Kieu NP, Lenman M, Wang ES, et al. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes[J]. Sci Rep, 2021, 11(1): 4487.
doi: 10.1038/s41598-021-83972-w pmid: 33627728 |
[9] |
Ye MW, Peng Z, Tang D, et al. Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nat Plants, 2018, 4(9): 651-654.
doi: 10.1038/s41477-018-0218-6 pmid: 30104651 |
[10] |
Zhao X, Jayarathna S, Turesson H, et al. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato[J]. Sci Rep, 2021, 11(1): 4311.
doi: 10.1038/s41598-021-83462-z pmid: 33619312 |
[11] | Zheng ZZ, Ye GJ, Zhou Y, et al. Editing sterol side chain reductase 2 gene(StSSR2)via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato[J]. Life, 2021, 14(1): 401-413. |
[12] |
Sheerman S, Benan MW. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors[J]. Plant Cell Rep, 1988, 7: 13-16.
doi: 10.1007/BF00272967 pmid: 24241405 |
[13] |
Gopal J, Minocha JL, Dhaliwal HS. Microtuberization in potato(Solanum tuberosum L.)[J]. Plant Cell Rep, 1998, 17(10): 794-798.
doi: 10.1007/s002990050485 pmid: 30736594 |
[14] | Heeres P, Schippers-Rozenboom M, Jacobsen E, et al. Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability[J]. Euphytica, 2002, 124(1): 13-22. |
[15] | Kamrani M, Ebadi A, Shiri M. Effect of explant, genotype and plant growth regulators on regeneration and Agrobacterium-mediated transformation of potato[J]. J Agronomy, 2015, 14(4): 227-233. |
[16] | Banerjee AK, Prat S, Hannapel DJ. Efficient production of transgenic potato(S. tuberosum L. ssp. andigena)plants via Agrobacterium tumefaciens-mediated transformation[J]. Plant Sci, 2006, 170(4): 732-738. |
[17] | Han EH, Goo YM, Lee MK, et al. An efficient transformation method for a potato(Solanum tuberosum L. var. Atlantic)[J]. J Plant Biotechnol, 2015, 42(2): 77-82. |
[18] | Cui D, Huo SS, Wang X, et al. Establishment of canine macrophages stably expressing GFP-tagged canine LC3 protein for effectively detecting autophagy[J]. Mol Cell Probes, 2020, 49: 101493. |
[19] | 陈广侠, 马伟清, 王培伦, 等. 马铃薯试管苗茎段长度对试管薯诱导的影响[J]. 山东农业科学, 2013, 45(12): 40-42. |
Chen GX, Ma WQ, Wang PL, et al. Effect of test-tube plantlet segment length on microtuber induction[J]. Shandong Agric Sci, 2013, 45(12): 40-42. | |
[20] | Hossain MA. Standardization of sucrose and 6-benzyl aminopurine for in vitro micro tuberization of potato[J]. Am J Agric For, 2015, 3(2): 25. |
[21] | 司怀军, 谢从华, 柳俊. 农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义class I patatin基因的导入[J]. 作物学报, 2003, 29(6): 801-805. |
Si HJ, Xie CH, Liu J. An efficient protocol for Agrobacterium-mediated transformation with microtuber and the introduction of an antisense class I patatin gene into potato[J]. Acta Agron Sin, 2003, 29(6): 801-805. | |
[22] | 齐恩芳, 贾小霞, 刘石, 等. 多抗转基因马铃薯植株的获得及农杆菌介导试管薯遗传转化体系优化[J]. 甘肃农业科技, 2020(11): 1-6. |
Qi EF, Jia XX, Liu S, et al. Obtaining of multiple resistance transgenic potato plant and optimization of Agrobacterium-mediated genetic transformation system of potato in vitro[J]. Gansu Agric Sci Technol, 2020(11): 1-6. | |
[23] | 张薇. 马铃薯高效再生及遗传转化体系的优化[J]. 安徽农业科学, 2024, 52(3): 35-39. |
Zhang W. Efficient regeneration of potato and optimization of genetic transformation system[J]. J Anhui Agric Sci, 2024, 52(3): 35-39. | |
[24] | Hossain MS, Mofazzal Hossain M, Hossain T, et al. Varietal performance of potato on induction and development of microtuber in response to sucrose[J]. Ann Agric Sci, 2017, 62(1): 75-81. |
[25] | Zakaria M, Hossain MM, Mian MK, et al. Performance of different protocols on in vitro tuberization in potato(Solanum tuberosum)[J]. Bangladesh J Agric Res, 2014, 39(1): 59-66. |
[26] | 颉瑞霞, 张小川, 张国辉, 等. 激素配比对马铃薯试管薯诱导和块茎形成的影响[J]. 分子植物育种, 2018, 16(13): 4355-4362. |
Xie RX, Zhang XC, Zhang GH, et al. Effect of hormone combination on induction and Tuber formation of potato microtuber[J]. Mol Plant Breed, 2018, 16(13): 4355-4362. | |
[27] | Gautam S, Solis-Gracia N, Teale MK, et al. Development of an in vitro microtuberization and temporary immersion bioreactor system to evaluate heat stress tolerance in potatoes(Solanum tuberosum L.)[J]. Front Plant Sci, 2021, 12: 700328. |
[28] | 赵佐敏. 马铃薯组培中不同因素对诱导试管薯的影响[J]. 中国马铃薯, 2005, 19(5): 278-280. |
Zhao ZM. Impact of various factors on the induction of microtubers[J]. Chin Potato J, 2005, 19(5): 278-280. | |
[29] | Aslam A, Iqbal J. Combined effect of cytokinin and sucrose on in vitro tuberization parameters of two cultivars i.e., diamant and red norland of potato(Solanum tuberosum)[J]. Pak J Bot, 2010, 42: 1093-1102. |
[30] | 王清, 李静文, 戴朝曦, 等. 纯合四倍体马铃薯遗传转化体系优化及转基因块茎的褐化鉴定[J]. 分子植物育种, 2006, 4(4): 553-558. |
Wang Q, Li JW, Dai CX, et al. Optimization transformation system of homozygous tetroploid potato and identification browning degree of transgenic Tuber[J]. Mol Plant Breed, 2006, 4(4): 553-558. | |
[31] | 王丽, 杨宏羽, 张俊莲, 等. 根癌农杆菌介导马铃薯试管薯转化体系的优化及AtNHX1基因的导入[J]. 西北植物学报, 2008, 28(6): 1088-1094. |
Wang L, Yang HY, Zhang JL, et al. Optimization of transformation conditions of potato by Agrobacterium tumefaciens and introduction of AtNHX1 gene[J]. Acta Bot Boreali Occidentalia Sin, 2008, 28(6): 1088-1094. | |
[32] | 宋倩娜, 梅超, 霍利光, 等. 马铃薯品种‘并薯6号’遗传转化体系的建立[J]. 中国马铃薯, 2021, 35(5): 385-396. |
Song QN, Mei C, Huo LG, et al. Establishment of genetic transformation system for potato variety ‘bingshu 6’[J]. Chin Potato J, 2021, 35(5): 385-396. | |
[33] |
杜静雅, 陈凯园, 普金, 等. 高效GFPuv荧光筛选基因编辑载体的改造及其在马铃薯遗传转化中的应用[J]. 中国农业科学, 2023, 56(11): 2223-2236.
doi: 10.3864/j.issn.0578-1752.2023.11.015 |
Du JY, Chen KY, Pu J, et al. The modification of gene editing vector for efficient GFPuv fluorescence screening and its application in potato genetic transformation[J]. Sci Agric Sin, 2023, 56(11): 2223-2236.
doi: 10.3864/j.issn.0578-1752.2023.11.015 |
|
[34] | Rao YC, Yang X, Pan CY, et al. Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement[J]. Front Plant Sci, 2022, 13: 839001. |
[35] |
Chincinska IA, Miklaszewska M, Sołtys-Kalina D. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing[J]. Planta, 2022, 257(1): 25.
doi: 10.1007/s00425-022-04054-3 pmid: 36562862 |
[36] |
叶明旺, 张春芝, 黄三文. 二倍体栽培马铃薯高效遗传转化体系的建立[J]. 中国农业科学, 2018, 51(17): 3249-3257.
doi: 10.3864/j.issn.0578-1752.2018.17.002 |
Ye MW, Zhang CZ, Huang SW. Construction of high efficient genetic transformation system for diploid potatoes[J]. Sci Agric Sin, 2018, 51(17): 3249-3257.
doi: 10.3864/j.issn.0578-1752.2018.17.002 |
[1] | SHEN Peng, GAO Ya-Bin, DING Hong. Identification and Expression Analysis of SAT Gene Family in Potato(Solanum tuberosum L.) [J]. Biotechnology Bulletin, 2024, 40(9): 64-73. |
[2] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
[3] | WANG Chao, BAI Ru-qian, GUAN Jun-mei, LUO Ji-lin, HE Xue-jiao, CHI Shao-yi, MA Ling. Promotion of StHY5 in the Synthesis of SGAs during Tuber Turning-green of Potato [J]. Biotechnology Bulletin, 2024, 40(9): 113-122. |
[4] | XIA Shi-xuan, GENG Ze-dong, ZHU Guang-tao, ZHANG Chun-zhi, LI Da-wei. Quick Detection of Potato Pollen Viability Based on Deep Learning [J]. Biotechnology Bulletin, 2024, 40(9): 123-130. |
[5] | MAO Xiang-hong, LU Yao, FAN Xiang-bin, DU Pei-bing, BAI Xiao-dong. Genetic Diversity Analysis of Potato Varieties Based on SSR Fluorescent Marker Capillary Electrophoresis and Construction of Molecular Identity Card [J]. Biotechnology Bulletin, 2024, 40(9): 131-140. |
[6] | YUAN Lan, HUANG Ya-nan, ZHANG Bei-ni, XIONG Yu-meng, WANG Hong-yang. High-throughput Sample Preparation Method for the Identification of Potato Ploidy Using Flow Cytometry [J]. Biotechnology Bulletin, 2024, 40(9): 141-147. |
[7] | WANG Ke-ran, YAN Jun-jie, LIU Jian-feng, GAO Yu-lin. Application and Risk of RNAi Technology in Potato Insect Pest Management [J]. Biotechnology Bulletin, 2024, 40(9): 4-10. |
[8] | ZHANG Xiao-mei, ZHOU Nan-ling, ZHANG Sai-hang, WANG Chao, SHEN Yu-long, GUAN Jun-mei, MA Ling. Cloning and Expression Analysis of StDREBs Gene in Solanum tuberosum L. [J]. Biotechnology Bulletin, 2024, 40(9): 42-50. |
[9] | MAN Quan-cai, MENG Zi-nuo, LI Wei, CAI Xin-ru, SU Run-dong, FU Chang-qing, GAO Shun-juan, CUI Jiang-hui. Identification and Expression Analysis of AQP Gene Family in Potato [J]. Biotechnology Bulletin, 2024, 40(9): 51-63. |
[10] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
[11] | QIAO Yan, YANG Fang, REN Pan-rong, QI Wei-liang, AN Pei-pei, LI Qian, LI Dan, XIAO Jun-fei. Cloning and Function Analysis of the ScDHNS Gene of Crotonase/Enoyl-CoA Superfamily from a Wild Potato Species [J]. Biotechnology Bulletin, 2024, 40(9): 92-103. |
[12] | ZHANG Zhen, LI Qing, XU Jing, CHEN Kai-yuan, ZHANG Chun-zhi, ZHU Guang-tao. Construction and Application of Potato Mitochondrial Targeted Expression Vector [J]. Biotechnology Bulletin, 2024, 40(5): 66-73. |
[13] | MEI Xian-jun, SONG Hui-yang, LI Jing-hao, MEI Chao, SONG Qian-na, FENG Rui-yun, CHEN Xi-ming. Cloning and Expression Analysis of StDof5 Gene in Potato [J]. Biotechnology Bulletin, 2024, 40(3): 181-192. |
[14] | ZHANG Chun-zhi, ZHOU Qian, WU Yao-yao, SHANG Yi, HUANG San-wen. Genomics Study Accelerates the Revolution of Potato Breeding [J]. Biotechnology Bulletin, 2024, 40(10): 11-18. |
[15] | LI Xin-ge, WANG Mei-xia, WANG Chen-yang, MA Gui-gen, ZHOU Chang-yong, WANG Ya-nan, ZHOU Huan-bin. Development and Optimization of Genome Editing in Rice with CRISPR/LanCas9 System [J]. Biotechnology Bulletin, 2024, 40(10): 233-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||