Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 187-201.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0671
LI Yan-wei(
), YANG Yan-yan, SUN Ya-ling, HUO Yu-meng, WANG Zhen-bao(
), LIU Bing-jiang(
)
Received:2024-07-15
Online:2025-02-26
Published:2025-02-28
Contact:
WANG Zhen-bao, LIU Bing-jiang
E-mail:wwyixiao2013@163.com;wangzhenbao17@163.com;ycbjliu@163.com
LI Yan-wei, YANG Yan-yan, SUN Ya-ling, HUO Yu-meng, WANG Zhen-bao, LIU Bing-jiang. Regulation Mechanism of Plant Hormones Related to Onion Bulb Enlargement and Development Based on Transcriptome Analysis[J]. Biotechnology Bulletin, 2025, 41(2): 187-201.
| 基因名称Gene name | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
|---|---|---|
| SAUR40 | F: AGGAGAAGAGATGAAGAGGT | R: TTACAAAAAGAAAAGGAGGA |
| SAUR50 | F: GCAATGAAGTAAGTGAAAGG | R: GGAAAATAGTAAAGAGGTGT |
| SAUR32 | F: TTCAGCCAGACCTAAGAGCG | R: CATAGCAACCACAGAACCCA |
| SCL32 | F: AGAGGATAGAGAGGTCGGA | R: ATAGGCATTTTCTTTGGTT |
| XTH22 | F: ATACAAGAACTTCAAGGCAG | R: ATTTTACAATAAGCACACCA |
| SUS | F: AATGCTTCACTTCCCCGCC | R: TCGCCCCAACCCTTCTCTA |
| GLU2 | F: GGTGGGATGGGAAACATAGGA | R: AAAGGAGGGTGGAAGTGGAGA |
| PGIP2 | F: CCCTTCTTTTCTCGCTAACCT | R: ATACCCCATTGTGGCACTCCT |
| LSH4A | F: TTGACCAGTTTGGAAAGACC | R: GCAGTAGCAGTAACAGGAGC |
| LSH4B | F: GCAGCGGGAGAGGGTAAGG | R: AAAAAGGCGGAAGGAAAAA |
| Actin | F: ACACGGCCTGGATAGCAACAT | R: AGAGCAGTATTCCCAAGCATT |
Table 1 Information of RT-qPCR primer sequences
| 基因名称Gene name | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
|---|---|---|
| SAUR40 | F: AGGAGAAGAGATGAAGAGGT | R: TTACAAAAAGAAAAGGAGGA |
| SAUR50 | F: GCAATGAAGTAAGTGAAAGG | R: GGAAAATAGTAAAGAGGTGT |
| SAUR32 | F: TTCAGCCAGACCTAAGAGCG | R: CATAGCAACCACAGAACCCA |
| SCL32 | F: AGAGGATAGAGAGGTCGGA | R: ATAGGCATTTTCTTTGGTT |
| XTH22 | F: ATACAAGAACTTCAAGGCAG | R: ATTTTACAATAAGCACACCA |
| SUS | F: AATGCTTCACTTCCCCGCC | R: TCGCCCCAACCCTTCTCTA |
| GLU2 | F: GGTGGGATGGGAAACATAGGA | R: AAAGGAGGGTGGAAGTGGAGA |
| PGIP2 | F: CCCTTCTTTTCTCGCTAACCT | R: ATACCCCATTGTGGCACTCCT |
| LSH4A | F: TTGACCAGTTTGGAAAGACC | R: GCAGTAGCAGTAACAGGAGC |
| LSH4B | F: GCAGCGGGAGAGGGTAAGG | R: AAAAAGGCGGAAGGAAAAA |
| Actin | F: ACACGGCCTGGATAGCAACAT | R: AGAGCAGTATTCCCAAGCATT |
Fig. 1 Morphological changes of onion bulb at different developmental stagesA: Morphology of onion bulb at different developmental stages; P1: four-leaf stage; P2: early formation stage; P3: middle formation stage; P4: later formation stage. Scale=5 mm. B: The length of bulb diameter at different developmental stage points, * indicates significant difference at 0.05 level. The same below
Fig. 2 Analysis of various hormone contents in bulb at different developmental stages** indicates significant difference at 0.01 level, and *** indicates significant difference at 0.001 level. The same below
样品 Sample | 原始数据 Raw data/Gb | 干净数据 Clean data/Gb | Q20/% | Q30/% | GC含量 GC Content/% | 外显子 Exon/% | 内含子 Intron/% | 基因间区 Intergenic/% |
|---|---|---|---|---|---|---|---|---|
| P1-1 | 5.39 | 4.98 | 98.72 | 94.77 | 43 | 86.68 | 2.92 | 10.40 |
| P1-2 | 5.6 | 5.05 | 98.81 | 95.25 | 43 | 87.15 | 2.69 | 10.16 |
| P1-3 | 5.54 | 5.07 | 98.86 | 95.44 | 43 | 87.22 | 2.86 | 9.92 |
| P2-1 | 6.16 | 5.79 | 98.79 | 95.04 | 42 | 85.83 | 2.95 | 11.23 |
| P2-2 | 6.27 | 5.89 | 98.71 | 93.70 | 42 | 86.29 | 2.92 | 10.79 |
| P2-3 | 6.53 | 6.1 | 98.81 | 94.27 | 42 | 85.88 | 2.93 | 11.19 |
| P3-1 | 6.26 | 5.88 | 98.82 | 95.23 | 42 | 84.54 | 3.44 | 12.02 |
| P3-2 | 6.24 | 5.89 | 98.74 | 94.94 | 42 | 83.91 | 3.72 | 12.37 |
| P3-3 | 5.41 | 4.94 | 98.68 | 94.81 | 42 | 84.10 | 3.40 | 12.51 |
| P4-1 | 6.42 | 5.86 | 98.85 | 95.40 | 42 | 84.44 | 3.47 | 12.08 |
| P4-2 | 5.99 | 5.47 | 98.76 | 95.19 | 42 | 84.55 | 3.62 | 11.83 |
| P4-3 | 6.28 | 5.79 | 98.78 | 95.08 | 42 | 85.08 | 3.29 | 11.62 |
Table 2 Statistics and quality assessment of transcriptome sequencing data assembly
样品 Sample | 原始数据 Raw data/Gb | 干净数据 Clean data/Gb | Q20/% | Q30/% | GC含量 GC Content/% | 外显子 Exon/% | 内含子 Intron/% | 基因间区 Intergenic/% |
|---|---|---|---|---|---|---|---|---|
| P1-1 | 5.39 | 4.98 | 98.72 | 94.77 | 43 | 86.68 | 2.92 | 10.40 |
| P1-2 | 5.6 | 5.05 | 98.81 | 95.25 | 43 | 87.15 | 2.69 | 10.16 |
| P1-3 | 5.54 | 5.07 | 98.86 | 95.44 | 43 | 87.22 | 2.86 | 9.92 |
| P2-1 | 6.16 | 5.79 | 98.79 | 95.04 | 42 | 85.83 | 2.95 | 11.23 |
| P2-2 | 6.27 | 5.89 | 98.71 | 93.70 | 42 | 86.29 | 2.92 | 10.79 |
| P2-3 | 6.53 | 6.1 | 98.81 | 94.27 | 42 | 85.88 | 2.93 | 11.19 |
| P3-1 | 6.26 | 5.88 | 98.82 | 95.23 | 42 | 84.54 | 3.44 | 12.02 |
| P3-2 | 6.24 | 5.89 | 98.74 | 94.94 | 42 | 83.91 | 3.72 | 12.37 |
| P3-3 | 5.41 | 4.94 | 98.68 | 94.81 | 42 | 84.10 | 3.40 | 12.51 |
| P4-1 | 6.42 | 5.86 | 98.85 | 95.40 | 42 | 84.44 | 3.47 | 12.08 |
| P4-2 | 5.99 | 5.47 | 98.76 | 95.19 | 42 | 84.55 | 3.62 | 11.83 |
| P4-3 | 6.28 | 5.79 | 98.78 | 95.08 | 42 | 85.08 | 3.29 | 11.62 |
Fig. 3 DEGs analysis in different developmental stages of bulbA: Numbers of DEGs. B: Venn diagram of DEGs. C: STEM analysis of shared DEGs among the three comparison groups
Fig. 5 Analysis of DEGs in IAA, CTK, GA, ABA, and ETH signal transduction pathwaysA: IAA, CTK, GA, ABA, and ETH signal transduction pathway. B: Heat map of plant hormone signal transduction metabolism-related genes. The heat map showed the FPKM value of different genes at different stages and the higher the value, the redder the color. From left to right, the samples are P1, P2, P3 and P4
Fig. 6 Visualization of gene co-expression networksA: Selection of optimal soft threshold. B: Cluster dendrogram and gene modules of DEGs. Different colors indicate different modules. C: Gene number of each module
Fig. 7 Correlation analysis between modules and phenotypes and co-expression networks visualization of core genesA: Co-expression network visualization of plant hormone signal transduction modules. Transcription factors are represented by triangles, while structural genes are represented by red circles. The larger the graph, the higher the connectivity of genes. B: Correlation heat map between module and trait. The values of each lattice indicate the correlation coefficients R2 and P, respectively. Red indicates positive correlation, and blue indicates negative correlation
| 29 | Roumeliotis E, Kloosterman B, Oortwijn M, et al. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato [J]. J Exp Bot, 2012, 63(12): 4539-4547. |
| 30 | Cheng LX, Wang YP, Liu YS, et al. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro [J]. Physiol Plant, 2018, 163(1): 103-123. |
| 31 | Zheng RR, Wu Y, Xia YP. Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids 'Sorbonne' [J]. J Zhejiang Univ Sci B, 2012, 13(2): 136-144. |
| 32 | Kloosterman B, Vorst O, Hall RD, et al. Tuber on a chip: differential gene expression during potato tuber development [J]. Plant Biotechnol J, 2005, 3(5): 505-519. |
| 33 | Argyros RD, Mathews DE, Chiang YH, et al. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development [J]. Plant Cell, 2008, 20(8): 2102-2116. |
| 34 | Ramireddy E, Brenner WG, Pfeifer A, et al. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence [J]. Plant Cell Physiol, 2013, 54(7): 1079-1092. |
| 35 | 袁文甲. 细胞分裂素应答因子OsRR2参与水稻根发育的调控机制研究 [D]. 武汉: 华中农业大学, 2017. |
| Yuan WJ. Study on the regulatory mechanism of mitogen response factor OsRR2 involved in rice root development [D]. Wuhan: Huazhong Agricultural University, 2017. | |
| 36 | Osorio S, Alba R, Damasceno CMB, et al. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions [J]. Plant Physiol, 2011, 157(1): 405-425. |
| 37 | Tiessen A, Hendriks JHM, Stitt M, et al. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply [J]. Plant Cell, 2002, 14(9): 2191-2213. |
| 38 | 童南奎, 陈世儒. 芥菜几个品种主要经济性状的遗传规律研究 [J]. 园艺学报, 1992, 19(2): 151-156. |
| Tong NK, Chen SR. Genetic studies on some important characters of vegetable mustard [J]. Acta Hortic Sin, 1992, 19(2): 151-156. | |
| 1 | 周爱凤, 刘磊, 刘刚, 等. 洋葱鳞茎特性的初步研究 [J]. 农业科技通讯, 2013(10): 112-113, 166. |
| Zhou AF, Liu L, Liu G, et al. Preliminary study on the characteristics of onion bulb [J]. Bull Agric Sci Technol, 2013(10): 112-113, 166. | |
| 2 | Zheng YQ, Liu YM, Ma M, et al. Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe) [J]. Acta Physiol Plant, 2008, 30(4): 513-519. |
| 3 | 孙玉燕, 李锡香. 蔬菜变态根茎发育的分子机理研究进展 [J]. 中国农业科学, 2015, 48(6): 1162-1176. |
| Sun YY, Li XX. A review on molecular mechanism of the modified roots or stems development in vegetables [J]. Sci Agric Sin, 2015, 48(6): 1162-1176. | |
| 4 | 张玲. 生长素和细胞分裂素在马铃薯块茎发育中的作用 [J]. 中国农业信息, 2014, 26(21): 14. |
| Zhang L. The role of auxin and cytokinin in potato Tuber development [J]. China Agric Inf, 2014, 26(21): 14. | |
| 5 | Wang DX, Cheng LX, Wang YP, et al. Comparative proteomic analysis of potato (Solanum tuberosum L.) tuberization in vitro regulated by IAA [J]. Am J Potato Res, 2018, 95(4): 395-412. |
| 6 | Simm S, Scharf KD, Jegadeesan S, et al. Survey of genes involved in biosynthesis, transport, and signaling of phytohormones with focus on Solanum lycopersicum [J]. Bioinform Biol Insights, 2016, 10: 185-207. |
| 7 | Dong TT, Zhu MK, Yu JW, et al. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.) [J]. BMC Plant Biol, 2019, 19(1): 136. |
| 8 | Borzenkova RA, Borovkova MP. Developmental patterns of phytohormone content in the cortex and pith of potato tubers as related to their growth and starch content [J]. Russ J Plant Physiol, 2003, 50(1): 119-124. |
| 9 | Lomin SN, Myakushina YA, Kolachevskaya OO, et al. Global view on the cytokinin regulatory system in potato [J]. Front Plant Sci, 2020, 11: 613624. |
| 39 | 姜立杰. 芜菁直根膨大性状的AFLP分析 [D]. 杭州: 浙江大学, 2001. |
| Jiang LJ. AFLP analysis of swelling characteristics of turnip straight roots [D]. Hangzhou: Zhejiang University, 2001. | |
| 40 | Chen H, Rosin FM, Prat S, et al. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation [J]. Plant Physiol, 2003, 132(3): 1391-1404. |
| 41 | Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1 [J]. Plant J, 2004, 38(2): 276-284. |
| 42 | Cheng LB, Li SY, Yin JJ, et al. Genome-wide analysis of differentially expressed genes relevant to rhizome formation in lotus root (Nelumbo nucifera gaertn) [J]. PLoS One, 2013, 8(6): e67116. |
| 43 | Hall TM. Multiple modes of RNA recognition by zinc finger proteins [J]. Curr Opin Struct Biol, 2005, 15(3): 367-373. |
| 44 | Gourcilleau D, Lenne C, Armenise C, et al. Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses [J]. DNA Res, 2011, 18(2): 77-92. |
| 45 | Iuchi S. Three classes of C2H2 zinc finger proteins [J]. Cell Mol Life Sci, 2001, 58(4): 625-635. |
| 46 | Molnár G, Bancoş S, Nagy F, et al. Characterisation of BRH1 a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana [J]. Planta, 2002, 215(1): 127-133. |
| 47 | Yun JY, Weigel D, Lee I. Ectopic expression of SUPERMAN suppresses development of petals and stamens [J]. Plant Cell Physiol, 2002, 43(1): 52-57. |
| 48 | Malik AH, Ashraf N. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L [J]. Mol Genet Genomics, 2017, 292(3): 619-633. |
| 49 | Li WT, He M, Wang J, et al. Zinc finger protein (ZFP) in plants-a review [J]. Plant OMICS, 2013, 6(6): 474-480. |
| 10 | Muñiz García MN, Stritzler M, Capiati DA. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation [J]. Planta, 2014, 239(3): 615-631. |
| 11 | 朱文姣, 刘璐, 章甲, 等. ABA合成基因StNCED2对马铃薯块茎形成的影响 [J]. 南京农业大学学报, 2019, 42(5): 854-861. |
| Zhu WJ, Liu L, Zhang J, et al. Effects of over-expressing ABA synthetic gene StNCED2 on potato tuberization [J]. J Nanjing Agric Univ, 2019, 42(5): 854-861. | |
| 12 | Kolachevskaya OO, Lomin SN, Arkhipov DV, et al. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance [J]. Plant Cell Rep, 2019, 38(6): 681-698. |
| 13 | Finkers R, van Kaauwen M, Ament K, et al. Insights from the first genome assembly of Onion (Allium cepa) [J]. G3, 2021, 11(9): jkab243. |
| 14 | Hao F, Liu X, Zhou BT, et al. Chromosome-level genomes of three key Allium crops and their trait evolution [J]. Nat Genet, 2023, 55(11): 1976-1986. |
| 15 | Yang PT, Yuan Y, Yan C, et al. AlliumDB: a central portal for comparative and functional genomics in Allium [J]. Hortic Res, 2023, 11(2): uhad285. |
| 16 | 武语笛. 芸薹属作物根膨大相关基因研究 [D]. 北京: 中国农业科学院, 2021. |
| Wu YD. Study on genes related to root swelling of Brassica crops [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
| 17 | 许俊旭, 李青竹, 李叶, 等. 石蒜鳞茎膨大过程中内源激素相关基因的差异表达研究 [J]. 园艺学报, 2020, 47(6): 1126-1140. |
| Xu JX, Li QZ, Li Y, et al. Differential expression of genes related to endogenous hormone during bulb development in Lycoris radiata [J]. Acta Hortic Sin, 2020, 47(6): 1126-1140. | |
| 18 | 卢晓月, 李大伟, 邬倩, 等. 马铃薯块茎不同发育时期转录组分析 [J]. 云南师范大学学报: 自然科学版, 2021, 41(4): 25-32. |
| Lu XY, Li DW, Wu Q, et al. Transcriptome analysis of potato tuber at different development stages [J]. J Yunnan Norm Univ Nat Sci Ed, 2021, 41(4): 25-32. | |
| 19 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct Method [J]. Methods, 2001, 25(4): 402-408. |
| 20 | Gray WM. Hormonal regulation of plant growth and development [J]. PLoS Biol, 2004, 2(9): E311. |
| 21 | Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation [J]. Plant J, 2021, 105(2): 446-458. |
| 22 | Li M, Chen R, Gu H, et al. Grape small auxin upregulated RNA (SAUR) 041 is a candidate regulator of berry size in grape [J]. Int J Mol Sci, 2021, 22(21): 11818. |
| 23 | Eviatar-Ribak T, Shalit-Kaneh A, Chappell-Maor L, et al. A cytokinin-activating enzyme promotes tuber formation in tomato [J]. Curr Biol, 2013, 23(12): 1057-1064. |
| 24 | Kolachevskaya OO, Alekseeva VV, Sergeeva LI, et al. Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro [J]. J Integr Plant Biol, 2015, 57(9): 734-744. |
| 25 | Gao JP, Cao XL, Shi SD, et al. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): identification, expression analysis, and evaluation of their roles in tuber development [J]. Biochem Biophys Res Commun, 2016, 471(2): 320-327. |
| 26 | Aung LH, Purohit SS. Growth substances and environment on the development of vegetative storage organs [J]. Hormonal Regulation of Plant Growth and Development, 1990: 91-105. |
| 27 | 许俊旭, 李青竹, 杨柳燕, 等. 赤霉素和细胞分裂素对石蒜鳞茎膨大的调控作用及其生理机制 [J]. 植物生理学报, 2019, 55(7): 1029-1037. |
| Xu JX, Li QZ, Yang LY, et al. The effect and the physiological mechanism of gibberellin and cytokinin on the regulation of Lycoris radiata bulb development [J]. Plant Physiol J, 2019, 55(7): 1029-1037. | |
| 28 | Faivre-Rampant O, Cardle L, Marshall D, et al. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene [J]. J Exp Bot, 2004, 55(397): 613-622. |
| [1] | LIU Jie, WANG Fei, TAO Ting, ZHANG Yu-jing, CHEN Hao-ting, ZHANG Rui-xing, SHI Yu, ZHANG Yi. Overexpression of SlWRKY41 Improves the Tolerance of Tomato Seedlings to Drought [J]. Biotechnology Bulletin, 2025, 41(2): 107-118. |
| [2] | SHEN Chuan, LI Xia, QIN Jian-feng, DUAN Long-fei, LIU Jia. Screening for WRKY72-interacting Proteins Using a Yeast Two-hybrid Library Derived from Soft Rot Pathogen-induced Amorphophallus konjac [J]. Biotechnology Bulletin, 2025, 41(1): 85-94. |
| [3] | MA Bo-tao, WU Guo-qiang, WEI Ming. Roles of bZIP Transcription Factor in the Response to Stresses, and Growth and Development in Plants [J]. Biotechnology Bulletin, 2024, 40(9): 148-160. |
| [4] | YUE Li-xin, WANG Qing-hua, LIU Ze-zhou, KONG Su-ping, GAO Li-min. Screening Genes Related to Male Sterile in Welsh Onion(Allium fistulosum L.) Based on Transcriptomic Profiling and WGCNA [J]. Biotechnology Bulletin, 2024, 40(9): 212-224. |
| [5] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
| [6] | NIE Zhu-xin, GUO Jin, QIAO Zi-yang, LI Wei-wei, ZHANG Xue-yan, LIU Chun-yang, WANG Jing. Transcriptome Analysis of the Anthocyanin Biosynthesis in the Fruit Development Processes of Lycium ruthenicum Murr. [J]. Biotechnology Bulletin, 2024, 40(8): 106-117. |
| [7] | YANG Wei, ZHAO Li-fen, TANG Bing, ZHOU Lin-bi, YANG Juan, MO Chuan-yuan, ZHANG Bao-hui, LI Fei, RUAN Song-lin, DENG Ying. Genome-wide Identification and Expression Analysis of the SRO Gene Family in Brassica juncea L. [J]. Biotechnology Bulletin, 2024, 40(8): 129-141. |
| [8] | LI Yu-qing, WU Nan, LUO Jian-rang. Cloning and Functional Analysis of bHLH Gene Related to Anthocyanin Synthesis in Paeonia qiui [J]. Biotechnology Bulletin, 2024, 40(8): 174-185. |
| [9] | ZANG Wen-rui, MA Ming, CHE Gen, HASI Agula. Genome-wide Identification and Expression Pattern Analysis of BZR Transcription Factor Gene Family of Melon [J]. Biotechnology Bulletin, 2024, 40(7): 163-171. |
| [10] | ZHANG Di, JU Rui, LI Li-mei, WANG Yu-qian, CHEN Rui, WANG Xin-yi. Application of Transcription Factor-based Biosensors in Environmental Analysis [J]. Biotechnology Bulletin, 2024, 40(6): 114-125. |
| [11] | HU Ya-dan, WU Guo-qiang, LIU Chen, WEI Ming. Roles of MYB Transcription Factor in Regulating the Responses of Plants to Stress [J]. Biotechnology Bulletin, 2024, 40(6): 5-22. |
| [12] | WANG Qiu-yue, DUAN Peng-liang, LI Hai-xiao, LIU Ning, CAO Zhi-yan, DONG Jin-gao. Construction of cDNA Library of Setosphaeria turcica and Screening of Transcription Factor StMR1 Interacting Proteins [J]. Biotechnology Bulletin, 2024, 40(6): 281-289. |
| [13] | WANG Jian, YANG Sha, SUN Qing-wen, CHEN Hong-yu, YANG Tao, HUANG Yuan. Genome-wide Identification and Expression Analysis of bHLH Transcription Factor Family in Dendrobium nobile [J]. Biotechnology Bulletin, 2024, 40(6): 203-218. |
| [14] | WANG Di ZHANG Xiao-yu SONG Yu-xin ZHENG Dong-ran TIAN Jing LI Yu-hua WANG Yu WU Hao. Advances in the Molecular Mechanisms of Plant Tissue Culture and Regeneration Regulated by Totipotency-related Transcription Factors [J]. Biotechnology Bulletin, 2024, 40(6): 23-33. |
| [15] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||