Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (5): 32-41.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0846
Previous Articles Next Articles
JIANG Li-si(
), LI Wen-yuan, ZHANG Yu-qi, YANG Yang-wen-di, LIU Zi-rui, FU Wei
Received:2024-08-30
Online:2025-05-26
Published:2025-06-05
Contact:
JIANG Li-si
E-mail:jianglisi@synu.edu.cn
JIANG Li-si, LI Wen-yuan, ZHANG Yu-qi, YANG Yang-wen-di, LIU Zi-rui, FU Wei. Research Progress in the Toxic Effects of Titanium Dioxide Nanoparticles on Plants[J]. Biotechnology Bulletin, 2025, 41(5): 32-41.
浓度 Concentration (mg/L) | 植物 Plant | 影响 Influence | 参考文献Reference |
|---|---|---|---|
| 10-20 | 野菊花Chrysanthemum indicum L. | 提升抗氧化酶活性 Enhances antioxidant enzyme activity | [ |
| 20 | 小麦Triticum aestivum L. | 提高生物量;缓解水胁迫 Increasing biomass; mitigation of water stress | [ |
| 60 | 玉米Zea mays L. | 提升抗氧化酶活性;缓解盐胁迫 Enhances antioxidant enzyme activity; mitigation of salt stress | [ |
| 100、200 | 桑树Morusalba L. | 抑制根长、芽长 Inhibition of root and shoot length | [ |
| 10-50 | 菜豆Phaseolus vulgaris L. | 提升抗氧化酶活性;脂质过氧化 Enhances antioxidant enzyme activity; lipid peroxidation | [ |
| 200-500 | 浮萍Lemna minor L. | 细胞质膜损伤 Cytoplasmic membrane damage | [ |
| 100 | 龙头草Meehania henryi Hemsl. | 提升抗氧化酶活性;缓解盐胁迫 Enhanced antioxidant enzyme activity; mitigation of salt stress | [ |
| 10 | 拟南芥Arabidopsis thaliana L. | 提升抗氧化酶活性;屏蔽紫外辐射 Enhances antioxidant enzyme activity; shielding against ultraviolet radiation | [ |
| 200 | 菠菜Spinacia oleracea L. | 抑制光合作用 Inhibition of photosynthesis | [ |
| 25-200 | 扁豆Lens culinaris | DNA损伤;细胞质膜损伤 DNA damage; cytoplasmic membrane damage | [ |
| 10 | 萝卜Raphanus sativus L. | DNA损伤 DNA damage | [ |
| 40 | 紫衫种子Vicia narbonensis L. | DNA损伤 DNA damage | [ |
| 2 000 | 洋葱Allium cepa L. | 细胞周期延滞;染色体畸变 Cell cycle arrest; chromosomal aberrations | [ |
Table 1 Effects of titanium dioxide nanoparticles (TiO2 NPs) on plants at different concentrations
浓度 Concentration (mg/L) | 植物 Plant | 影响 Influence | 参考文献Reference |
|---|---|---|---|
| 10-20 | 野菊花Chrysanthemum indicum L. | 提升抗氧化酶活性 Enhances antioxidant enzyme activity | [ |
| 20 | 小麦Triticum aestivum L. | 提高生物量;缓解水胁迫 Increasing biomass; mitigation of water stress | [ |
| 60 | 玉米Zea mays L. | 提升抗氧化酶活性;缓解盐胁迫 Enhances antioxidant enzyme activity; mitigation of salt stress | [ |
| 100、200 | 桑树Morusalba L. | 抑制根长、芽长 Inhibition of root and shoot length | [ |
| 10-50 | 菜豆Phaseolus vulgaris L. | 提升抗氧化酶活性;脂质过氧化 Enhances antioxidant enzyme activity; lipid peroxidation | [ |
| 200-500 | 浮萍Lemna minor L. | 细胞质膜损伤 Cytoplasmic membrane damage | [ |
| 100 | 龙头草Meehania henryi Hemsl. | 提升抗氧化酶活性;缓解盐胁迫 Enhanced antioxidant enzyme activity; mitigation of salt stress | [ |
| 10 | 拟南芥Arabidopsis thaliana L. | 提升抗氧化酶活性;屏蔽紫外辐射 Enhances antioxidant enzyme activity; shielding against ultraviolet radiation | [ |
| 200 | 菠菜Spinacia oleracea L. | 抑制光合作用 Inhibition of photosynthesis | [ |
| 25-200 | 扁豆Lens culinaris | DNA损伤;细胞质膜损伤 DNA damage; cytoplasmic membrane damage | [ |
| 10 | 萝卜Raphanus sativus L. | DNA损伤 DNA damage | [ |
| 40 | 紫衫种子Vicia narbonensis L. | DNA损伤 DNA damage | [ |
| 2 000 | 洋葱Allium cepa L. | 细胞周期延滞;染色体畸变 Cell cycle arrest; chromosomal aberrations | [ |
| 1 | Nasr M, Eid C, Habchi R, et al. Recent progress on titanium dioxide nanomaterials for photocatalytic applications [J]. ChemSusChem, 2018, 11(18): 3023-3047. |
| 2 | Yin ZF, Wu L, Yang HG, et al. Recent progress in biomedical applications of titanium dioxide [J]. Phys Chem Chem Phys, 2013, 15(14): 4844-4858. |
| 3 | Yu JG, Zhao XJ. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the Sol-gel derived TiO2 thin films [J]. Mater Res Bull, 2001, 36(1/2): 97-107. |
| 4 | 李奕洋. 原子团簇纳米二氧化钛材料抗菌性能及电化学研究 [D]. 北京: 北京化工大学, 2021. |
| Li YY. Study on antibacterial properties and electrochemistry of atomic cluster nano-TiO2 materials [D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| 5 | Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environ Int, 2006, 32(8): 967-976. |
| 6 | Larue C, Laurette J, Herlin-Boime N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase [J]. Sci Total Environ, 2012, 431: 197-208. |
| 7 | 王苗苗. 纳米二氧化钛对镉胁迫下小白菜毒性效应的影响机制 [D]. 北京: 中国农业科学院, 2020. |
| Wang MM. Influence mechanism of nano titanium dioxide on the toxicity effects of Chinese cabbage under cadmium stress [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
| 8 | Lettieri S, Pavone M, Fioravanti A, et al. Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: a review [J]. Materials, 2021, 14(7): 1645. |
| 9 | Ma HY, Zhao LX, Guo LH, et al. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV [J]. J Hazard Mater, 2019, 369: 719-726. |
| 10 | Yuan SJ, Chen JJ, Lin ZQ, et al. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide [J]. Nat Commun, 2013, 4: 2249. |
| 11 | Mishra V, Mishra RK, Dikshit A, et al. Interactions of nanoparticles with plants [M]//Emerging Technologies and Management of Crop Stress Tolerance. Amsterdam: Elsevier, 2014: 159-180. |
| 12 | 徐洪超, 商靖, 刘铭荟, 等. 氮代谢相关酶的研究进展 [J]. 安徽农业科学, 2022, 50(4): 17-20. |
| Xu HC, Shang J, Liu MH, et al. Research progress of enzymes related to nitrogen metabolism [J]. J Anhui Agric Sci, 2022, 50(4): 17-20. | |
| 13 | Pavasupree S, Chanchula N, Nunya N, et al. Titanium dioxide nanoparticles affect growth and antibacterial activity of Chrysanthemum indicum cuttings in vitro culture [J]. S Afr N J Bot, 2023, 156: 72-78. |
| 14 | Jaberzadeh A, Moaveni P, Tohidi Moghadam HR, et al. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress [J]. Not Bot Hort Agrobot Cluj, 2013, 41(1): 201. |
| 15 | Mahmoodzadeh H, Nabavi M, Kashefi H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus) [J]. J Ornam Plants, 2015, 3: 25-32. |
| 16 | Shah T, Latif S, Saeed F, et al. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress [J]. J King Saud Univ Sci, 2021, 33(1): 101207. |
| 17 | 于栋梁. 纳米二氧化钛对桑树种子萌发及幼苗生长发育影响的研究 [D]. 南宁: 广西大学, 2023. |
| Yu DL. Effects of nano-titanium dioxide on seed germination and seedling growth of mulberry [D]. Nanning: Guangxi University, 2023. | |
| 18 | Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, et al. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth [J]. Biol Trace Elem Res, 2012, 146(1): 101-106. |
| 19 | Šebesta M, Kolenčík M, Sunil BR, et al. Field application of ZnO and TiO2 nanoparticles on agricultural plants [J]. Agronomy, 2021, 11(11): 2281. |
| 20 | Abdel Hamed Abdel Latef A, Srivastava AK, El-sadek MSA, et al. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions [J]. Land Degrad Dev, 2018, 29(4): 1065-1073. |
| 21 | Alabdallah NM, Alluqmani SM, Almarri HM, et al. Physical, chemical, and biological routes of synthetic titanium dioxide nanoparticles and their crucial role in temperature stress tolerance in plants [J]. Heliyon, 2024, 10(4): e26537. |
| 22 | Skipitari M, Kalaitzopoulou E, Papadea P, et al. Titanium dioxide nanoparticle-based hydroxyl and superoxide radical production for oxidative stress biological simulations [J]. J Photochem Photobiol A Chem, 2023, 435: 114290. |
| 23 | Li Z, Juneau P, Lian Y, Zhang W, et al. Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus [J]. Plants. 2020, 9(12):1748. |
| 24 | Hadizadeh H, Samiei L, Shakeri A. Chrysanthemum, an ornamental genus with considerable medicinal value: a comprehensive review [J]. S Afr N J Bot, 2022, 144: 23-43. |
| 25 | Ebrahimi A, Galavi M, Ramroudi M, et al. Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in pinto bean (Phaseolus vulgaris L.) [J]. J Mol Biol Res, 2015, 6(1): 58. |
| 26 | Song GL, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor [J]. Environ Toxicol Chem, 2012, 31(9): 2147-2152. |
| 27 | Li FM, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production [J]. Aquat Toxicol, 2015, 158: 1-13. |
| 28 | Gohari G, Mohammadi A, Akbari A, et al. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica [J]. Sci Rep, 2020, 10(1): 912. |
| 29 | Wang JH, Li MW, Feng JL, et al. Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana [J]. Chemosphere, 2021, 281: 130809. |
| 30 | Ze YG, Liu C, Wang L, et al. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana [J]. Biol Trace Elem Res, 2011, 143(2): 1131-1141. |
| 31 | Hashemi SA, Tabibian S. Application of Mulberry nigra to absorb heavy metal, mercury, from the environment of green space city [J]. Toxicol Rep, 2018, 5: 644-646. |
| 32 | 吴碧莹. 纳米二氧化钛对水稻的毒性及代谢影响初探 [D]. 杭州: 浙江大学, 2017. |
| Wu BY. The toxicity and metabolic effects of TiO2 nanoparticle on rice (Oryza sativa L.) [D]. Hangzhou: Zhejiang University, 2017. | |
| 33 | Zheng L, Su MY, Wu X, et al. Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach [J]. Biol Trace Elem Res, 2007, 120(1-3): 273-283. |
| 34 | Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants[J]. Sci Total Environ. 2024, 910:168669. |
| 35 | 杨逾凡. 土施纳米TiO2对番茄生长及土壤酶活性的影响 [D]. 太谷: 山西农业大学, 2022. |
| Yang YF. Effects of soil application of nano-tio2 on tomato growth and soil enzyme activities [D]. Taigu: Shanxi Agricultural University, 2022. | |
| 36 | Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants [M]//Nanotechnology and Plant Sciences. Cham: Springer International Publishing, 2015: 1-17. |
| 37 | Fenoglio I, Greco G, Livraghi S, et al. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses [J]. Chemistry, 2009, 15(18): 4614-4621. |
| 38 | Khan Z, Shahwar D, Yunus Ansari MK, et al. Toxicity assessment of anatase (TiO2) nanoparticles: a pilot study on stress response alterations and DNA damage studies in Lens culinaris medik [J]. Heliyon, 2019, 5(7): e02069. |
| 39 | Jiang LS, Zhang QR, Wang JM, et al. Ecotoxicological effects of titanium dioxide nanoparticles and Galaxolide, separately and as binary mixtures, in radish (Raphanus sativus) [J]. J Environ Manag, 2021, 294: 112972. |
| 40 | Ruffini Castiglione M, Giorgetti L, Cremonini R, et al. Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects [J]. Protoplasma, 2014, 251(6): 1471-1479. |
| 41 | Ahmed B, Shahid M, Khan MS, et al. Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb [J]. Metallomics, 2018, 10(9): 1315-1327. |
| 42 | Amini S, Maali-Amiri R, Mohammadi R, et al. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress [J]. Plant Physiol Biochem, 2017, 111: 39-49. |
| 43 | 沙天珍, 刘莹, 海梅荣. 外源褪黑素对干旱胁迫下植物生理及根际土壤影响的研究进展 [J]. 江苏农业科学, 2024, 52(15): 8-15. |
| Sha TZ, Liu Y, Hai MR. Progress in the study of the effects of exogenous melatonin on plant physiology and inter-root soil under drought stress [J]. Jiangsu Agric Sci, 2024, 52(15): 8-15. | |
| 44 | Zhu LX, Li AC, Sun HC, et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress [J]. Ind Crops Prod, 2023, 204: 117344. |
| 45 | Yang XX, Feng K, Wang G, et al. Titanium dioxide nanoparticles alleviates polystyrene nanoplastics induced growth inhibition by modulating carbon and nitrogen metabolism via melatonin signaling in maize [J]. J Nanobiotechnology, 2024, 22(1): 262. |
| 46 | Chen Z, Han ML, Guo ZP, et al. An integration of physiology, transcriptomics, and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanoparticles [J]. J Hazard Mater, 2024, 474: 134851. |
| 47 | Wu BY, Zhu LZ, Le XC. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.) [J]. Environ Pollut, 2017, 230: 302-310. |
| 48 | Zhang YD, Liu N, Wang W, et al. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles [J]. Front Environ Sci Eng, 2020, 14(6): 103. |
| 49 | Lai MY, Ghouri F, Sarwar S, et al. Modulation of metal transporters, oxidative stress and cell abnormalities by synergistic application of silicon and titanium oxide nanoparticles: a strategy for cadmium tolerance in rice [J]. Chemosphere, 2023, 345: 140439. |
| 50 | 王苗苗, 强沥文, 王伟, 等. 纳米二氧化钛对镉胁迫下小白菜毒性效应的影响 [J]. 农业环境科学学报, 2020, 39(6): 1185-1195. |
| Wang MM, Qiang LW, Wang W, et al. Effects of nano titanium dioxide on the toxicity of Chinese cabbage under cadmium stress [J]. J Agro Environ Sci, 2020, 39(6): 1185-1195. | |
| 51 | Kumar D, Mariyam S, Gupta KJ, et al. Comparative investigation on chemical and green synthesized titanium dioxide nanoparticles against chromium (Ⅵ) stress eliciting differential physiological, biochemical, and cellular attributes in Helianthus annuus L [J]. Sci Total Environ, 2024, 930: 172413. |
| 52 | Ghouri F, Shahid MJ, Liu JW, et al. The protective role of tetraploidy and nanoparticles in arsenic-stressed rice: Evidence from RNA sequencing, ultrastructural and physiological studies [J]. J Hazard Mater, 2023, 458: 132019. |
| [1] | YANG Jia-hong, LI Jing-yi, WU Jia-hao, HUANG You-mei, LIU Yan-fen, QIN Yuan, CAI Han-yang. Research Progress in the Auxin Signaling Pathway Involved in the Regulation of Female Gametophyte Development in Arabidopsis [J]. Biotechnology Bulletin, 2024, 40(7): 19-27. |
| [2] | PENG Yu-jia, LI Wen-cui, LIU Yong-bo. Research Progress in the Evolution Mechanisms for Insect Resistance to Insecticides and Bt-transgenic Plants [J]. Biotechnology Bulletin, 2024, 40(4): 40-51. |
| [3] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
| [4] | ZHENG Min-min, LIU Jie, ZHAO Qing. Research Progress and Prospects of Biological Studies on the Medicinal Plant Scutellaria baicalensis [J]. Biotechnology Bulletin, 2023, 39(2): 10-23. |
| [5] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
| [6] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
| [7] | ZHANG Hao, LIU Miao-miao, LIU Xiao-na, LI Zong-yu, ZHAO Li-li, YANG Qing-xiang. Impact of Endophytic Microorganisms on the Pharmaco-active Compounds Production in Medicinal Plants:A Review [J]. Biotechnology Bulletin, 2022, 38(8): 41-51. |
| [8] | ZHAO Jie, LI An, LIANG Gang, JIN Xin-xin, PAN Li-gang. Research Progress in the Biological Functions of Plant circRNAs [J]. Biotechnology Bulletin, 2022, 38(10): 1-9. |
| [9] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
| [10] | QIAN Kai-rong, MA Zeng-ling, LI Ren-hui, CHEN Bin-bin, WANG Min, ZHU Shu-nan, RONG Meng-wei, QIN Wen-li. Progress in the Study of Allelopathy in Plants:A Case Study of Inhibiting Microcystis aerugingosa Growth [J]. Biotechnology Bulletin, 2021, 37(4): 177-193. |
| [11] | MA qin, LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di. Research Progress on the Symbiotic Metabolic of Endophytes and Plants Under Stress [J]. Biotechnology Bulletin, 2021, 37(3): 153-161. |
| [12] | GUO Li-li, LI Yu-ying, GUO Da-long, HOU Xiao-gai. Research Progress on High-density Genetic Linkage Map Construction of Important Ornamental Plants:a Review [J]. Biotechnology Bulletin, 2021, 37(1): 246-254. |
| [13] | SHI Xiao-ping, CHEN Yin-ping, YAN Zhi-qiang, LUO Yong-qing, LI Yu-qiang, DING Jun-gang, XIE Hai-fan. Research Progress on Plant Allelopathy [J]. Biotechnology Bulletin, 2020, 36(6): 215-222. |
| [14] | LIU Jun, JIN Yu, WU Yao-song, LIU Yan, WANG Wen-bin, REN Shan-shan, DIAO Song-feng, CHEN Yu-long. Advances on the Structural Characteristics and Function of Dof Gene in Plant [J]. Biotechnology Bulletin, 2020, 36(10): 180-190. |
| [15] | YAN Wu-ping, WU You-gen, YU Jing ,YANG Dong-mei, ZHANG Jun-feng. Research Progress and Prospect of microRNA in Medicinal Plants [J]. Biotechnology Bulletin, 2019, 35(8): 178-185. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||