Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 99-108.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1136
Previous Articles Next Articles
TAN Yu-rong1,2(
), CHEN Dong-liang1, YANG Shou-zhen1, LAI Zhen-guang1, TANG Xiang-min1, SUN Zu-dong1(
), ZENG Wei-ying1(
)
Received:2024-11-24
Online:2025-06-26
Published:2025-06-30
Contact:
SUN Zu-dong, ZENG Wei-ying
E-mail:tanyurong11@163.com;sunzudong639@163.com;zengweiying_1981@163.com
TAN Yu-rong, CHEN Dong-liang, YANG Shou-zhen, LAI Zhen-guang, TANG Xiang-min, SUN Zu-dong, ZENG Wei-ying. Functioal Analysis on GmKTI1-like Gene of Soybean Resistance to Bean Pyralid (Lamprosema indicata)[J]. Biotechnology Bulletin, 2025, 41(6): 99-108.
| 用途Usage | 引物和探针名称 Primer and probe name | 引物序列 Primer sequence (5′‒3′) |
|---|---|---|
| 普通PCR | CP4-EPSPS-F CP4-EPSPS-R | CCTTCATGTTCGGCGGTCTCG GCGTCATGATCGGCTCGATG |
GmKTI1-like J-F GmKTI1-like J-R | ATGAAGAGTACCTTGTTCGCC CATGCAGATGAAAGAGTTAATCCT | |
| qPCR | CYP2-F CYP2-R | CGGGACCAGTGTTCTTCTTCA CCCCTCCACTACAAAGGCTCG |
GmKTI1-like Q-F GmKTI1-like Q-R | TACCTTGTTCGCCCTCTTTCTACTT GCATATTCTATTCCACCGCCGTTTA | |
| TaqMan qPCR | Lectin-F Lectin-R Probe1 | CTCTACTCCACCCCCATCCA GAAGGAAGCGGCGAAGCT FAM-TGGGACAAAGAAACCGGTAGCGTTGC-TAMRA |
Nos-F Nos-R Probe2 | ACGATTTCAAGCGCATCATC TCACTATTCACCAGTAACAGCAG FAM-TATAAGTATCTTCCTGGG-TAMRA |
Table 1 Primers and probes used in this study
| 用途Usage | 引物和探针名称 Primer and probe name | 引物序列 Primer sequence (5′‒3′) |
|---|---|---|
| 普通PCR | CP4-EPSPS-F CP4-EPSPS-R | CCTTCATGTTCGGCGGTCTCG GCGTCATGATCGGCTCGATG |
GmKTI1-like J-F GmKTI1-like J-R | ATGAAGAGTACCTTGTTCGCC CATGCAGATGAAAGAGTTAATCCT | |
| qPCR | CYP2-F CYP2-R | CGGGACCAGTGTTCTTCTTCA CCCCTCCACTACAAAGGCTCG |
GmKTI1-like Q-F GmKTI1-like Q-R | TACCTTGTTCGCCCTCTTTCTACTT GCATATTCTATTCCACCGCCGTTTA | |
| TaqMan qPCR | Lectin-F Lectin-R Probe1 | CTCTACTCCACCCCCATCCA GAAGGAAGCGGCGAAGCT FAM-TGGGACAAAGAAACCGGTAGCGTTGC-TAMRA |
Nos-F Nos-R Probe2 | ACGATTTCAAGCGCATCATC TCACTATTCACCAGTAACAGCAG FAM-TATAAGTATCTTCCTGGG-TAMRA |
Fig. 1 Amino acid sequence analysis and structure prediction of GmKTI1-likeA: Amino acid sequence analysis. B: Conservative domain. C: Comparison. D: Distribytion of GmKTI1-like gene on soybean chrommosomes. D: Signal peptide. E: Tertiary structure of the protein
Fig. 3 Expression pattern of GmKTI1-like gene in different tissues of soybeanA: Expression pattem of GmKTI1-like in different tissues of soybean based on RNA-seq data. B: RT-qPCR assays of the tissue expression pattern of GmKTI1-like in different tissues of soybean. Different letters in the figure indicate significant differences (P≤0.05). The same below
Fig. 4 Molecular detection of some overexpressed plantsA: Protein test strip assay detection of the exogenous gene CP4-EPSPS. B: PCR detection of the exogenous gene CP4-EPSPS. C: PCR detection of the gene GmKTI1-like; M1: DL 2000 DNA marker; M2: BM2000+ DNA marker
Fig. 5 Expressions of the target gene GmKTI1-like in some transgenic soybean plantsCK indicates non-transgenic line, other lines indicate transgenic line
| T1代植株编号 T1 plant No. | CtR (Lectin) | CtX (Nos) | X0/R0 |
|---|---|---|---|
| GmKTI1-like-4-8 | 26.66 | 28.64 | 1.01 |
| GmKTI1-like-5-9 | 27.20 | 28.71 | 1.05 |
| GmKTI1-like-6-4 | 26.80 | 27.22 | 1.10 |
| GmKTI1-like-6-9 | 24.72 | 28.78 | 0.88 |
| GmKTI1-like-7-2 | 27.57 | 28.68 | 1.08 |
| GmKTI1-like-9-2 | 26.31 | 28.71 | 0.98 |
| GmKTI1-like-12-1 | 27.79 | 28.90 | 1.08 |
| GmKTI1-like-15-6 | 25.91 | 28.08 | 0.99 |
Table 2 Copy number of exogenous sequences in transgenic soybean plants of T2 generation
| T1代植株编号 T1 plant No. | CtR (Lectin) | CtX (Nos) | X0/R0 |
|---|---|---|---|
| GmKTI1-like-4-8 | 26.66 | 28.64 | 1.01 |
| GmKTI1-like-5-9 | 27.20 | 28.71 | 1.05 |
| GmKTI1-like-6-4 | 26.80 | 27.22 | 1.10 |
| GmKTI1-like-6-9 | 24.72 | 28.78 | 0.88 |
| GmKTI1-like-7-2 | 27.57 | 28.68 | 1.08 |
| GmKTI1-like-9-2 | 26.31 | 28.71 | 0.98 |
| GmKTI1-like-12-1 | 27.79 | 28.90 | 1.08 |
| GmKTI1-like-15-6 | 25.91 | 28.08 | 0.99 |
Fig. 7 Identification of indoor inoculationA: Leaf feeding after 48 h of inoculation (a, b indicate non-transgenic plants, c‒i indicate transgenic plants). B: Weight of remaining leaves after 48 h of inoculation (CK indicates non-transgenic plants, others indicate transgenic plants)
Fig. 8 Enzymatic activities of trypsin inhibitors in GmKTI1-like overexpressed lines subjected to bean leaf roller stress** indicates highly significant differences between strains at the P≤0.01 level. CK indicates non-transgenic plants, others indicate transgenic plants
| 1 | 曾维英, 蔡昭艳, 张志鹏, 等. 大豆抗豆卷叶螟的生理生化特性研究 [J]. 南方农业学报, 2015, 46(12): 2112-2116. |
| Zeng WY, Cai ZY, Zhang ZP, et al. Physiological and biochemical characteristics of Lamprosema indicata (Fabricius)-resistant soybean [J]. J South Agric, 2015, 46(12): 2112-2116. | |
| 2 | 崔章林, 盖钧镒, 吉东风, 等. 南京地区大豆食叶性害虫种类调查与分析 [J]. 大豆科学, 1997, 16(1): 12-20. |
| Cui ZL, Gai JY, Ji DF, et al. A study on leaf-feeding insect species on soybeans in Nanjing area [J]. Soybean Sci, 1997, 16(1): 12-20. | |
| 3 | 崔章林, 盖钧镒. 大豆抗食叶性害虫研究进展 [J]. 大豆科学, 1996, 15(2): 149-158. |
| Cui ZL, Gai JY. A dvance of study on soybean leaf-feeding insects [J]. Soybean Sci, 1996, 15(2): 149-158. | |
| 4 | 姜海平. 大豆卷叶螟的发生与防治 [J]. 上海农业科技, 2002(2): 80-81. |
| Jiang HP. Occurrence and control of soybean leaf roller [J]. Shanghai Agric Sci Technol, 2002(2): 80-81. | |
| 5 | 邢光南, 谭连美, 刘泽稀楠, 等. 大豆地方品种叶片叶柄茸毛性状的形态变异及其与豆卷叶螟抗性的相关分析 [J]. 大豆科学, 2012, 31(5): 691-696. |
| Xing GN, Tan LM, Liu ZXN, et al. Morphological variation of pubescence on leaf blade and petiole and their correlation with resistance to bean pyralid (Lamprosema indicata Fabricius) in soybean landraces [J]. Soybean Sci, 2012, 31(5): 691-696. | |
| 6 | 李新畅, 崔娟, 徐伟, 等. 温度对豆卷叶螟Lamprosema indicata (Fabricius)生长发育的影响 [J]. 大豆科学, 2018, 37(4): 590-595. |
| Li XC, Cui J, Xu W, et al. Effects of temperature on growth and development of Lamprosema indicata (Fabricius) [J]. Soybean Sci, 2018, 37(4): 590-595. | |
| 7 | 孙祖东, 杨守臻, 陈怀珠, 等. 大豆对豆卷叶螟的抗性鉴定 [J]. 中国油料作物学报, 2005, 27(4): 69-71. |
| Sun ZD, Yang SZ, Chen HZ, et al. Identification of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) and oviposition preference of bean pyralid on soybean varieties [J]. Chin J Oil Crop Scieves, 2005, 27(4): 69-71. | |
| 8 | Xing GN, Zhou B, Wang YF, et al. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean [J]. Theor Appl Genet, 2012, 125(5): 859-875. |
| 9 | 李广军, 程利国, 张国政, 等. 大豆对豆卷叶螟抗性的主基因+多基因混合遗传 [J]. 大豆科学, 2008, 27(1): 33-36, 41. |
| Li GJ, Cheng LG, Zhang GZ, et al. Mixed major-gene plus polygenes inheritance analysis for resistance in soybean to bean pyralid (Lamprosema indicata Fabricius) [J]. Soybean Sci, 2008, 27(1): 33-36, 41. | |
| 10 | Zeng WY, Sun ZD, Lai ZG, et al. Determination of the MiRNAs related to bean pyralid larvae resistance in soybean using small RNA and transcriptome sequencing [J]. Int J Mol Sci, 2019, 20(12): 2966. |
| 11 | 曾维英, 孙祖东, 赖振光, 等. 大豆抗豆卷叶螟的转录组和蛋白质组关联分析 [J]. 中国农业科学, 2018, 51(7): 1244-1260. |
| Zeng WY, Sun ZD, Lai ZG, et al. Correlation analysis on transcriptomic and proteome of soybean resistance to bean pyralid (Lamprosema indicata) [J]. Sci Agric Sin, 2018, 51(7): 1244-1260. | |
| 12 | Zeng WY, Sun ZD, Cai ZY, et al. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema indicate [J]. BMC Genomics, 2017, 18(1): 444. |
| 13 | Zeng WY, Sun ZD, Cai ZY, et al. Comparative transcriptome analysis of soybean response to bean pyralid larvae [J]. BMC Genomics, 2017, 18(1): 871. |
| 14 | Bendre AD, Ramasamy S, Suresh CG. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights [J]. Int J Biol Macromol, 2018, 113: 933-943. |
| 15 | Jofuku KD, Goldberg RB. Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants [J]. Plant Cell, 1989, 1(11): 1079-1093. |
| 16 | Guerra Y, Valiente PA, Pons T, et al. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop? [J]. J Struct Biol, 2016, 195(2): 259-271. |
| 17 | Koide T, Ikenaka T. Studies on soybean trypsin inhibitors [J]. Eur J Biochem, 1973, 32(3): 417-431. |
| 18 | Song SI, Kim CH, Baek SJ, et al. Nucleotide sequences of cDNAs encoding the precursors for soybean (Glycine max) trypsin inhibitors (Kunitz type) [J]. Plant Physiol, 1993, 101(4): 1401-1402. |
| 19 | Gatehouse A, Shi Y, Powell K, et al. Approaches to insect resistance using transgenic plants [J]. Phil Trans R Soc Lond B, 1993, 342(1301): 279-286. |
| 20 | Sagili RR, Pankiw T, Zhu-Salzman K. Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.) [J]. J Insect Physiol, 2005, 51(9): 953-957. |
| 21 | Chougule NP, Doyle E, Fitches E, et al. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (Cabbage Moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays [J]. J Insect Physiol, 2008, 54(3): 563-572. |
| 22 | Jamal F, Pandey PK, Singh D, et al. Serine protease inhibitors in plants: nature's arsenal crafted for insect predators [J]. Phytochem Rev, 2013, 12(1): 1-34. |
| 23 | Jagdish M, Koundal KR. Constitutive expression of protease inhibitor gene isolated from black gram (Vigna mungo L.) confers resistance to Spodoptera litura in transgenic tobacco plants [J]. Indian J Biotechnol, 2020, 19(2): 94-101. |
| 24 | Khalf M, Goulet C, Vorster J, et al. Tubers from potato lines expressing a tomato Kunitz protease inhibitor are substantially equivalent to parental and transgenic controls [J]. Plant Biotechnol J, 2010, 8(2): 155-169. |
| 25 | 何雨娟, 鞠迪, 王悦, 等. 水稻蛋白酶抑制剂基因OsLTPL164和OsLTPL151的组成型及诱导型表达模式 [J]. 中国农业科学, 2018, 51(12): 2311-2321. |
| He YJ, Ju D, Wang Y, et al. Compositive and inductive expression patterns of protease inhibitor genes OsLTPL164 and OsLTPL151 in rice (Oryza sativa) [J]. Sci Agric Sin, 2018, 51(12): 2311-2321. | |
| 26 | 张洪伟. 转移蛋白酶抑制剂基因RNAi表达载体转化大豆的遗传变异研究 [D]. 长春: 吉林农业大学, 2008. |
| Zhang HW. Study on genetic variation of soybean transformed by RNAi expression vector of transferase inhibitor gene [D]. Changchun: Jilin Agricultural University, 2008. | |
| 27 | Weng HB, Pan AH, Yang LT, et al. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene [J]. Plant Mol Biol Report, 2004, 22(3): 289-300. |
| 28 | 胡壮壮, 徐先超, 潘霖, 等. 不同生殖生长期大豆器官对斜纹夜蛾抗性分析 [J]. 大豆科学, 2020, 39(6): 932-939. |
| Hu ZZ, Xu XC, Pan L, et al. Resistance analyses of soybean organs to common cutworm (Spodoptera litura) at different reproductive stages [J]. Soybean Sci, 2020, 39(6): 932-939. | |
| 29 | Mehmood S, Thirup SS, Ahmed S, et al. Crystal structure of kunitz-type trypsin inhibitor: entomotoxic effect of native and encapsulated protein targeting gut trypsin of Tribolium castaneum herbst [J]. Comput Struct Biotechnol J, 2024, 23: 3132-3142. |
| 30 | Belew M, Eaker D. The trypsin and chymotrypsin inhibitors in chick peas (Cicer arietinum L). Identification of the trypsin-reactive site, partial-amino-acid sequence and further physico-chemical properties of the major inhibitor [J]. Eur J Biochem, 1976, 62(3): 499-508. |
| 31 | Broadway RM, Duffey SS, Pearce G, et al. Plant Proteinase inhibitors: a defense against herbivorous insects? [J]. Entomol Exp Appl, 1986, 41(1): 33-38. |
| 32 | Meekins DA, Kanost MR, Michel K. Serpins in arthropod biology [J]. Semin Cell Dev Biol, 2017, 62: 105-119. |
| 33 | Rufino FPS, Pedroso VMA, Araujo JN, et al. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases [J]. Plant Physiol Biochem, 2013, 63: 70-76. |
| 34 | 牛蓓, 李锐, 杨林, 等. 一个麻风树Kunitz型蛋白酶抑制剂基因的克隆和鉴定 [J]. 四川大学学报: 自然科学版, 2016, 53(5): 1169-1176. |
| Niu B, Li R, Yang L, et al. Cloning and characterization of a Kunitz type protease inhibitor gene JcKTI from Jatropha curcas [J]. J Sichuan Univ Nat Sci Ed, 2016, 53(5): 1169-1176. | |
| 35 | Botelho-Júnior S, Machado OLT, Fernandes KVS, et al. Defense response in non-genomic model species: methyl jasmonate exposure reveals the passion fruit leaves' ability to assemble a cocktail of functionally diversified Kunitz-type trypsin inhibitors and recruit two of them against papain [J]. Planta, 2014, 240(2): 345-356. |
| [1] | ZHAO Qiang, CHEN Si-yu, PENG Fang-li, WANG Can, GAO Jie, ZHOU Ling-bo, ZHANG Guo-bing, JIANG Yu-wen, SHAO Ming-bo. Effects of Intercropping and Nitrogen Application on the Diversity and Functions of Soil Bacteria around Sorghum Rhizosphere [J]. Biotechnology Bulletin, 2025, 41(6): 307-316. |
| [2] | ZHAO Jing, GUO Qian, LI Rui-qi, LEI Ying-yang, YUE Ai-qin, ZHAO Jin-zhong, YIN Cong-cong, DU Wei-jun, NIU Jing-ping. Sequence Analysis and Induced Expression Analysis of GmGST Gene Cluster Genes in Soybean [J]. Biotechnology Bulletin, 2025, 41(5): 129-140. |
| [3] | LIN Zi-yi, WU Yi-zhou, YE Fang-xian, ZHU Shu-ying, LIU Yan-min, LIU Su-shuang. Functional Analysis of Soybean GmPM31 Gene Promoter Involvement in Response to High Temperature and Humidity Stress [J]. Biotechnology Bulletin, 2025, 41(3): 90-97. |
| [4] | SONG Ying-pei, WANG Can, ZHOU Hui-wen, KONG Ke-ke, XU Meng-ge, WANG Rui-kai. Analysis of Soybean Pod Dehiscence Habit Based on Whole Genome Association Analysis and Genetic Diversity [J]. Biotechnology Bulletin, 2025, 41(2): 97-106. |
| [5] | LIU Ke-han, YANG Sheng-hui, HUANG Qiao-yun, CUI Wen-jing. Isolation and Application of Soybean Rhizobia and Symbiosis-promoting Rhizobacteria from Heilongjiang Province [J]. Biotechnology Bulletin, 2025, 41(1): 252-262. |
| [6] | WU Shuai, XIN Yan-ni, MAI Chun-hai, MU Xiao-ya, WANG Min, YUE Ai-qin, ZHAO Jin-zhong, WU Shen-jie, DU Wei-jun, WANG Li-xiang. Genome-wide Identification and Stress Response Analysis of Soybean GS Gene Family [J]. Biotechnology Bulletin, 2024, 40(8): 63-73. |
| [7] | GAO Meng-meng, ZHAO Tian-yu, JIAO Xin-yue, LIN Chun-jing, GUAN Zhe-yun, DING Xiao-yang, SUN Yan-yan, ZHANG Chun-bao. Comparative Transcriptome Analysis of Cytoplasmic Male Sterile Line and Its Restorer Line in Soybean [J]. Biotechnology Bulletin, 2024, 40(7): 137-149. |
| [8] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
| [9] | BAI Zhi-yuan, XU Fei, YANG Wu, WANG Ming-gui, YANG Yu-hua, ZHANG Hai-ping, ZHANG Rui-jun. Transcriptome Analysis of Fertility Transformation in Weakly Restoring Hybrid F1 of Soybean Cytoplasmic Male Sterility [J]. Biotechnology Bulletin, 2024, 40(6): 134-142. |
| [10] | LOU Yin, GAO Hao-jun, WANG Xi, NIU Jing-ping, WANG Min, DU Wei-jun, YUE Ai-qin. Identification and Expression Pattern Analysis of GmHMGS Gene in Soybean [J]. Biotechnology Bulletin, 2024, 40(4): 110-121. |
| [11] | LIU Yi-jun, YAN Wei, HE Yu-xuan, DONG Li-ming, LONG Li-kun, LI Fei-wu. Development and Application of DNA Standard Molecules of Transgenic Soybean Multi-target Plasmid [J]. Biotechnology Bulletin, 2024, 40(11): 169-183. |
| [12] | LI Jiong-shan, YANG Ze, YAN Xing, LIU Yi-zhen, GUO Yu-shuang, XUE Jin-ai, SUN Xi-ping, JI Chun-li, ZHANG Chun-hui, LI Run-zhi. Analysis of Increasing Glyphosate Resistance and Growth-promoting Effects in Soybean by Desmodesmus subspicatus [J]. Biotechnology Bulletin, 2024, 40(11): 236-247. |
| [13] | HAN Le-le, SONG Wen-di, BIAN Jia-shen, LI Yang, YANG Shuang-sheng, CHEN Zi-yi, LI Xiao-wei. Revealing the Flavonoid Biosynthesis of Soybean GmERD15c under Salt Stress by Combined Analysis of Transcriptome and Metabolome [J]. Biotechnology Bulletin, 2024, 40(10): 243-252. |
| [14] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
| [15] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||