[1] Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases[J]. Enzyme Microb Technol, 2006, 39(2):235-251.
[2] Shu ZY, Wu JG, Chen D, et al. Optimization of Burkholderia sp. ZYB002 lipase production for pitch control in thermomechanical pulping(TMP)processes[J]. Holzforschung, 2012, 66(3):341-348.
[3] Shu ZY, Wu JG, Cheng LX, et al. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002[J]. Appl Biochem Biotech, 2012, 166(3):536-548.
[4] 吴继光, 舒正玉, 程蓝骍, 等. 耐受有机溶剂洋葱伯克霍尔德菌ZYB002全细胞脂肪酶酶学性质研究[J]. 微生物学通报, 2010, 37(1):2-6.
[5] Yu LL, Xu Y, Wang XQ, et al. Highly enantioselective hydrolysis of DL-menthyl acetate to L-menthol by whole-cell lipase from Burkholderia cepacia ATCC 25416[J]. J Mol Catal B Enzym, 2007, 47(3-4):149-154.
[6] Wang D, Xu Y, Teng Y. Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane[J]. Bioproc Biosyst Eng, 2007, 30(3):147-55.
[7] Druet D, El Abbadi N, Comeau LC. Purification and characterization of the extracellular and cell-bound lipases from a Penicillium cyclopium variety[J]. Appl Microbiol Biotechnol, 1992, 37(6):745-749.
[8] K?the M, Antl M, Huber B, et al. Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system[J]. Cell Microbiol, 2003, 5(5):343-351.
[9] Van HE, Litthauer D, Verger R. Biochemical characterisation and kinetic properties of a purified lipase from Aspergillus niger in bulk phase and monomolecular films[J]. Enzyme Microb Technol, 2002, 30(7):902-909.
[10] Jia B, Yang JK, Liu WS, et al. Homologous overexpression of a lipase from Burkholderia cepacia using the lambda red recombinase system[J]. Biotechnol Lett, 2010, 32(4):521-526.
[11] Lee JC, Oh JY, Cho JW, et al. The prevalence of trimethoprim-resistance-conferring dihydrofolate reductase genes in urinary isolates of Escherichia coli in Korea[J]. J Antimicrob Chemother, 2001, 47(5):599-604.
[12] Dale GE, Broger C, D’Arcy A, et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trime-thoprim resistance[J]. J Mol Biol, 1997, 266(1):23-30.
[13] Ferreira AS, Silva IN, Oliveira VH, et al. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments[J]. Front Cell Infect Microbiol, 2011, 1:16.
[14] Wingender J. Interactions of alginate with exoenzymes[M]//Gacesa P, Russell NJ. Pseudomonas infection and alginates-Biochemistry, genetics and pathology. London/New York/Tokyo:Chapman and Hall, 1990:160-180.
[15] Wingender J, Jaeger KE. Extracellular enzymes in biofilms.//Bitton G. Encyclopedia of Environmental Microbiology:Vol.3[M]. New York:John Wiley and Sons, 2002:1207-1223.
[16] Tielen P, Kuhn H, Rosenau F, et al. Interaction between extracell-ular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa[J]. BMC Microbiol, 2013, 13:159.
[17] Bassegoda A, Pastor FI, Diaz P. Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family(Family X)displaying an unusual Y-type oxyanion hole similar to the Candida antarctica lipase clan[J]. Appl Environ Microbiol, 2012, 78(6):1724-1732.
[18] Rosenau F, Isenhardt S, Gdynia A, et al. Lipase LipC affects motility biofilm formation and rhamnolipid production in Pseudomonas aeruginosa[J]. FEMS Microbiol Lett, 2010, 309(1):25-34.
[19] Martínez A, Ostrovsky P, Nunn DN. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components[J]. Mol Microbiol, 1999, 34(2):317-326.
|