Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (1): 21-28.doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.003
Previous Articles Next Articles
Yan Hongbo, Wang Wei1,2, Li Lingdi1,2, An Wanchang2
Received:
2014-04-18
Online:
2015-01-09
Published:
2015-01-10
Yan Hongbo, Wang Wei, Li Lingdi, An Wanchang. Research Progress of the Arginine Biosynthetic Pathway in Prokaryotic Cells[J]. Biotechnology Bulletin, 2015, 31(1): 21-28.
[1] Schneider BL, Kiupakis AK, Reitzer LJ. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli[J]. Journal of Bacteriology, 1998, 180(16):4278-4286. [2] Lu CD. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains[J]. Applied Microbiology and Biotechnology, 2006, 70(3):261-272. [3] Rajagopal BS, Depo--nte J, Tuchman M, et al. Use of inducible feedback-resistant N-acetylglutamate synthetase(argA)genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strai--ns[J]. Ap--plied and Environmental Microbiology, 1998, 64(5):1805-1811. [4] Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer[J]. Applied and Environmental Microbiology, 2009, 75(6):1635-1641. [5] Appleton J. Arginine:clinical potential of a semi-essential amino acid[J]. Alternative Medicine Review, 2002, 7(6):512-522. [6] Haynes JJr, Baliga BS, Obiako B, et al. Zileuton induces hemoglobin F synthesis in erythroid progenitors:role of the L-arginine-nitric oxide signaling pathway[J]. Blood, 2004, 103(10):3945-3950. [7] Olinto SC, Adriao MG, Castro-Barbosa T, et al. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries[J]. Brazilian Journal of Medical and Biological Research, 2012, 45(11):1066-1073. [8] Gonzaga Silva LF, Odorico de Moraes M, Santos Dias Soares F, et al. Effects of L-arginine-enriched total enteral nutrition on body weight gain, tumor growth, and in vivo concentrations of blood and tissue metabolites in rats inoculated with Walker tumor in the kidney[J]. Nutrition, 2004, 20(2):225-229. [9] Suliburska J, Bogdanski P, Krejpcio Z, et al. The effects of L-arginine, alone and combined with vitamin C, on mineral status in relation to its antidiabetic, anti-inflammatory, and antioxidant properties in male rats on a high-fat diet[J]. Biological Trace Element Research, 2014, 157(1):67-74. [10] Nesher N, Frolkis I, Schwartz D, et al. L-Arginine improves endothelial function, independently of arginine uptake, in aortas from chronic renal failure female rats[J]. American Journal of Physiology Renal Physiology, 2014, 306(4):F449-456. [11] Caldovic L, Tuchman M. N-acetylglutamate and its changing role through evolution[J]. The Biochemical Journal, 2003, 372(Pt 2):279-290. [12] Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis:a reappraisal of the enzymology and evolution of the pathway in microorganisms[J]. Microbiology and Molecular Biology Reviews, 2007, 71(1):36-47. [13] Petri K, Walter F, Persicke M, et al. A novel type of N-acetylgluta-mate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum[J]. BMC Genomics, 2013, 14:713. [14] Jones ME. Catalysts of the urea cyclea[J]. Transactions of the New York Academy of Sciences, 1983, 41(1 Series II):77-82. [15] Alonso E, Rubio V. Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation[J]. The Biochemical Journal, 1989, 259(1):131-138. [16] Gil-Ortiz F, Ramon-Maiques S, Fernandez-Murga ML, et al.Two crystal structures of Escherichia coli N-acetyl-L-glutamate kinase demonstrate the cycling between open and closed conformations[J]. Journal of Molecular Biology, 2010, 399(3):476-490. [17] Cunin R, Glansdorff N, Piérard A, Stalon V. Biosynthesis and metabolism of arginine in bacteria[J]. Microbiol Rev, 1986, 50(3):314-352. [18] Harris BZ, Singer M. Identification and characterization of the Myxococcus xanthus argE gene[J]. Journal of Bacteriology, 1998, 180(23):6412-6414. [19] Van de Casteele M, Legrain C, Desmarez L, et al. Pathways of arginine biosynthesis in extreme thermophilic archaeo and eubacteria[J]. Journal of General Microbiology, 1990, 136:1177-1183. [20] Xu Y, Liang ZY, Legrain C, et al. Evolution of arginine biosynthesis in the bacterial domain:novel gene-enzyme relationships from psychrophilic Moritella strains(Vibrionaceae)and evolutionary significance of N-alpha-acetyl ornithinase[J]. Journal of Bacteriology, 2000, 182(6):1609-1615. [21] Udaka S. Pathway-specific pattern of control of arginine biosynth-esis in bacteria[J]. Journal of Bacteriology, 1966, 91(2):617-621. [22] Qu Q, Morizono H, Shi D, et al. A novel bifunctional N-acetylgluta-mate synthase-kinase from Xanthomonas campestris that is closely related to mammalian N-acetylglutamate synthase[J]. BMC Biochemistry, 2007, 8:4. [23] Haas D, Holloway BW, Schambock A, et al. The genetic organiza-tion of arginine biosynthesis in Pseudomonas aeruginosa[J]. Molecular & General Genetics, 1977, 154(1):7-22. [24] Floriano B, Herrero A, Flores E. Analysis of expression of the argC and argD genes in the cyanobacterium Anabaena sp. strain PCC 7120[J]. Journal of Bacteriology, 1994, 176(20):6397-6401. [25] Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of My-cobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998, 393(6685):537-544. [26] Jiao H. Analysis of the arginine biosynthetic gene cluster argCJBD-FR of Corynebacterium crenatum[J]. Journal of Biomedical Science and Engineering, 2011, 4(1):70-75. [27] Yim SH, Jung S, Lee SK, et al. Purification and characterization of an arginine regulatory protein, ArgR, in Corynebacterium glutami-cum[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12):1911-1920. [28] Caldovic L, Ah Mew N, Shi D, et al. N-acetylglutamate synthase:structure, function and defects[J]. Molecular Genetics and Metabolism, 2010, 100(Suppl 1):S13-19. [29] Sancho-Vaello E, Fernandez-Murga ML, Rubio V. Site-directed mutagenesis studies of acetylglutamate synthase delineate the site for the arginine inhibitor[J]. FEBS Letters, 2008, 582(7):1081-1086. [30] Cunin R, Glansdorff N, Pierard A, et al. Biosynthesis and metabol-ism of arginine in bacteria[J]. Microbiol Rev, 1986, 50(3):314-352. [31] Maas WK, Novelli GD, Lipmann F. Acetylation of glutamic acid by extracts of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1953, 39(10):1004-1008. [32] Parra-Gessert L, Koo K, Fajardo J, et al. Processing and function of a polyprotein precursor of two mitochondrial proteins in neurospora crassa[J]. The Journal of Biological Chemistry, 1998, 273(14):7972-7980. [33] Sancho-Vaello E, Fernandez-Murga ML, Rubio V. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis[J]. FEBS Letters, 2009, 583(1):202-206. [34] Sancho-Vaello E, Fernandez-Murga ML, Rubio V. Functional dissection of N-acetylglutamate synthase(ArgA)of Pseudomonas aeruginosa and restoration of its ancestral N-acetylglutamate kinase activity[J]. Journal of Bacteriology, 2012, 194(11):2791-2801. [35] Gil-Ortiz F, Ramón-Maiques S, Fita I, et al. The course of phosphorus in the reaction of N-acetyl-l-glutamate kinase, determined from the structures of crystalline complexes, including a complex with an AlF(4)(-)transition state mimic[J]. Journal of Molecular Biology, 2003, 331(1):231-244. [36] Marco-Marín C, Ramón-Maiques S, Tavárez S, et al. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase[J]. Journal of Molecular Biology, 2003, 334(3):459-476. [37] Ramon-Maiques S, Fernandez-Murga ML, Gil-Ortiz F, et al. Struct-ural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa[J]. Journal of Molecular Biology, 2006, 356(3):695-713. [38] Sundaresan R, Ragunathan P, Kuramitsu S, et al. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus rev-eals an intermediate active site conformation of the enzyme[J]. Biochemical and Biophysical Research Communications, 2012, 420(3):692-697. [39] Baetens M, Legrain C, Boyen A, et al. Genes and enzymes of the acetyl cycle of arginine biosynthesis in the extreme thermophilic bacterium Thermus thermophilus HB27[J]. Microbiology, 1998, 144(Pt 2):479-492. [40] Lee SY, Shin HS, Park JS, et al. Proline reduces the binding of tra-nscriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2010, 86(1):235-242. [41] Lee SY, Kim YH, Min J. The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum[J]. Current Microbiology, 2009, 59(4):483-488. [42] Lee SY, Park JM, Lee JH, et al. Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2011, 77(3):711-718. [43] Martin PR, Mulks MH. Molecular characterization of the argJ mutation in Neisseria gonorrhoeae strains with requirements for arginine, hypoxanthine, and uracil[J]. Infection and Immunity, 1992, 60(3):970-975. [44] Martin PR, Mulks MH. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae[J]. Journal of Bacteriology, 1992, 174(8):2694-2701. [45] Shinners EN, Catlin BW. Arginine biosynthesis in Neisseria gonorr hoeae:enzymes catalyzing the formation of ornithine and citrul-line[J]. Journal of Bacteriology, 1978, 136(1):131-135. [46] De Rijcke M, Seneca S, Punyammalee B, et al. Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine[J]. Molecular and Cellular Biology, 1992, 12(1):68-81. [47] Marc F, Weigel P, Legrain C, et al. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms[J]. Eur J Biochem, 2000, 267(16):5217-5226. [48] Marc F, Weigel P, Legrain C, et al. An invariant threonine is invo-lved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase[J]. The Journal of Biological Chemistry, 2001, 276(27):25404-25410. [49] Hirvonen AP, Vogel HJ. Response of argR- spheroplasts of Escherichia coli to extracted arginine repressor[J]. Biochemical and Biophysical Research Communications, 1970, 41(6):1611-1616. [50] Hoet PP, Wiame JM. On the nature of argR mutations is Saccharomyces cerevisiae[J]. European Journal of Biochemistry / FEBS, 1974, 43(1):87-92. [51] Kelln RA, Foltermann KF, O’Donovan GA. Location of the argR gene on the chromosome of Salmonella typhimurium[J]. Molecular & General Genetics, 1975, 139(4):277-284. [52] Park SM, Lu CD, Abdelal AT. Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operons[J]. Journal of Bacteriology, 1997, 179(17):5309-5317. [53] Cherney LT, Cherney MM, Garen CR, et al. Crystal structure of the intermediate complex of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator reveals detailed mechanism of arginine repression[J]. Journal of Molecular Biology, 2010, 399(2):240-254. [54] Perez-Redondo R, Rodriguez-Garcia A, Botas A, et al. ArgR of Streptomyces coelicolor is a versatile regulator[J]. PloS One, 2012, 7(3):e32697. [55] Lim DB, Oppenheim JD, Eckhardt T, et al. Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(19):6697-6701. [56] Maas WK. The arginine repressor of Escherichia coli[J]. Microbiol Rev, 1994, 58(4):631-640. [57] Grandori R, Lavoie TA, Pflumm M, et al. The DNA-binding domain of the hexameric arginine repressor[J]. Journal of Molecular Biology, 1995, 254(2):150-162. [58] Tian G, Lim D, Carey J, et al. Binding of the arginine repressor of Escherichia coli K12 to its operator sites[J]. Journal of Molecular Biology, 1992, 226(2):387-397. [59] Charlier D, Roovers M, Van Vliet F, et al. Arginine regulon of Escherichia coli K-12. a study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression[J]. Journal of Molecular Biology, 1992, 226(2):367-386. [60] Xu M, Rao Z, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacter-ium crenatum for improvement of(L)-arginine production[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3):495-502. [61] Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedbackresistant N-acetyl-L-glutamate kinase(NAGK)increase Coryne-bacterium crenatum L-arginine production[J]. Amino Acids, 2012, 43(1):255-266. [62] Lv Y, Liao J, Wu Z, et al. Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria[J]. Journal of Bacteriology, 2012, 194(3):742-743. |
[1] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[2] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
[3] | SHENG Xue-qing, ZHAO Nan, LIN Ya-qiu, CHEN Ding-shuang, WANG Rui-long, LI Ao, WANG Yong, LI Yan-yan. Cloning and Expression Analysis of ZNF32 Gene in Goat [J]. Biotechnology Bulletin, 2022, 38(12): 300-311. |
[4] | ZHANG Hao, HE Chang-sheng, LI Yan-yan, WANG Yong, ZHU Jiang-jiang, Emu Quzhe, LIN Ya-qiu. Regulation of miR-301b on Goat Intramuscular Adipocyte Differentiation [J]. Biotechnology Bulletin, 2022, 38(10): 254-261. |
[5] | ZHU Wen, TANG Ying-ying, SUN Xin-yang, ZHOU Ming, ZHANG Zi-jun, CHEN Xing-yong. Effect of Low Crude Protein Diet on the Liver Transcriptome Sequencing of Goats [J]. Biotechnology Bulletin, 2021, 37(9): 203-211. |
[6] | WANG Lü-yang, KANG Cui-cui, FENG Jiang-yin, DING Li-ren, HANG Su-qin. Comparative Study of Pig Duodenum Between Tissue Perfusion Culture and Static Culture [J]. Biotechnology Bulletin, 2021, 37(2): 246-252. |
[7] | ZHANG Hao, ZHANG Ya-nan, LI Xin, WANG Jia-mei, WANG Yong, ZHU Jiang-jiang, XIONG Yan, LIN Ya-qiu. Effect of PDK4 on the Lipid Metabolism of Goat Intramuscular Adipocytes [J]. Biotechnology Bulletin, 2021, 37(12): 151-159. |
[8] | PAN Lan-jia, LI Jie, LIN Qing-huai, WANG Yin. Research Progress on Biosynthesis of Polyhydroxyalkanoates from Waste Oils [J]. Biotechnology Bulletin, 2020, 36(7): 190-199. |
[9] | ZHANG Le-chao, LIU Yue-qin, DUAN Chun-hui, ZHANG Ying-jie, WANG Yong, GUO Yun-xia. Analysis of Genetic Diversity and Genetic Structure in 7 Local Goat Breeds [J]. Biotechnology Bulletin, 2020, 36(6): 183-190. |
[10] | LI Xiao-kai, FAN Yi-xing, QIAO Xian, ZHANG Lei, WANG Feng-hong, WANG Zhi-ying, WANG Rui-jun, ZHANG Yan-jun, LIU Zhi-hong, WANG Zhi-xin, HE Li-bing, LI Jin-quan, SU Rui, ZHANG Jia-xin. Research Progress of Goat Genome and Genetic Variation Map [J]. Biotechnology Bulletin, 2020, 36(4): 175-184. |
[11] | SONG Shao-zheng, LU Rui, ZHANG Ting, HE Zheng-yi, WU Zhao-manqiu, CHENG Yong, ZHOU Ming-ming. Research Progress of CRISPR /Cas9 Gene Editing Technology in Goat and Sheep [J]. Biotechnology Bulletin, 2020, 36(3): 62-68. |
[12] | QIU Shi-zheng, LI Jia-yi, YANG Jing-chen, LIU Chang-li. Research Progress of Low-cost Method of Synthetizing Polyhydroxyalkanoates(PHAs) [J]. Biotechnology Bulletin, 2019, 35(9): 45-52. |
[13] | LIU Na, LIU Zhi-min, SONG Dong-hui. Degradation Characteristics of Catechol and Sodium Benzoate by a Petroleum-degrading Bacterium [J]. Biotechnology Bulletin, 2019, 35(9): 156-164. |
[14] | ZHOU Min-ya, LU Rui, ZHANG Ting, YUAN Ting-ting, LU Yao-yao, YAN Kun-ning, YUAN Yu-guo, CHENG Yong. Preparation of Recombinant Human SOD1/3 Transgenic Goat and Detection of Expressed Products [J]. Biotechnology Bulletin, 2019, 35(5): 85-92. |
[15] | NIMANTANA, ZHANG Yan-jun, LIU Dong-jun, LI Jin-quan. Expression of HFSC Marker in the Arbas Cashmere Goat Hair Follicle and Hair Follicle Stem Cells [J]. Biotechnology Bulletin, 2018, 34(5): 201-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||