Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 203-211.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1505
Previous Articles Next Articles
ZHU Wen(), TANG Ying-ying, SUN Xin-yang, ZHOU Ming, ZHANG Zi-jun, CHEN Xing-yong()
Received:
2020-12-11
Online:
2021-09-26
Published:
2021-10-25
Contact:
CHEN Xing-yong
E-mail:zhuwen@ahau.edu.cn;chenxingyong@ahau.edu.cn
ZHU Wen, TANG Ying-ying, SUN Xin-yang, ZHOU Ming, ZHANG Zi-jun, CHEN Xing-yong. Effect of Low Crude Protein Diet on the Liver Transcriptome Sequencing of Goats[J]. Biotechnology Bulletin, 2021, 37(9): 203-211.
项目 Item | 对照组CK | 低蛋白组LCP |
---|---|---|
原料 Ingredient | ||
玉米 Ground corn grain | 13.0 | 21.0 |
豆粕 Soybean meal | 24.0 | 16.0 |
麸皮 Wheat bran | 7.5 | 7.5 |
小苏打 Sodium bicarbonate Salt | 1.0 | 1.0 |
食盐Salt | 1.0 | 1.0 |
磷酸氢钙 Dicalcium phosphate | 0.5 | 0.5 |
石粉 Calcium carbonate | 1.0 | 1.0 |
预混料Premix | 1.0 | 1.0 |
花生秧 Peanut vine | 28.0 | 28.0 |
羊草 Chinese wild rye | 22.0 | 22.0 |
合计Total | 100.0 | 100.0 |
营养水平Chemical Composition | ||
有机物 Organic matter | 86.3 | 88.3 |
粗蛋白质 Crude protein | 14.8 | 12.0 |
中性洗涤纤维 Neutral detergent fiber | 46.4 | 44.8 |
酸性洗涤纤维 Acid detergent fiber | 31.8 | 31.2 |
粗脂肪 Ether extract | 3.74 | 3.27 |
粗灰分 Ash | 13.7 | 11.7 |
代谢能 Metabolizable energy | 10.5 | 10.5 |
Table 1 Ingredients and chemical composition of the expe-rimental diets(dry matter basis)
项目 Item | 对照组CK | 低蛋白组LCP |
---|---|---|
原料 Ingredient | ||
玉米 Ground corn grain | 13.0 | 21.0 |
豆粕 Soybean meal | 24.0 | 16.0 |
麸皮 Wheat bran | 7.5 | 7.5 |
小苏打 Sodium bicarbonate Salt | 1.0 | 1.0 |
食盐Salt | 1.0 | 1.0 |
磷酸氢钙 Dicalcium phosphate | 0.5 | 0.5 |
石粉 Calcium carbonate | 1.0 | 1.0 |
预混料Premix | 1.0 | 1.0 |
花生秧 Peanut vine | 28.0 | 28.0 |
羊草 Chinese wild rye | 22.0 | 22.0 |
合计Total | 100.0 | 100.0 |
营养水平Chemical Composition | ||
有机物 Organic matter | 86.3 | 88.3 |
粗蛋白质 Crude protein | 14.8 | 12.0 |
中性洗涤纤维 Neutral detergent fiber | 46.4 | 44.8 |
酸性洗涤纤维 Acid detergent fiber | 31.8 | 31.2 |
粗脂肪 Ether extract | 3.74 | 3.27 |
粗灰分 Ash | 13.7 | 11.7 |
代谢能 Metabolizable energy | 10.5 | 10.5 |
序号No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') | 产物长度Product size/bp | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | PC-F | TGCGGTCCATCCTGGTCAA | 87 | 63.3 |
PC-R | ACGCCAGGTAGGACCAGTT | |||
2 | FASN-F | ACCTCGTGAAGGCTGTGACTCA | 196 | 59.5 |
FASN-R | TGAGTCGAGGCCAAGGTCTGAA | |||
3 | IGF1-F | TCTTGAAGCAGGTGAAGATGCC | 144 | 60 |
IGF1-R | ACACGAACTGGAGAGCATCC | |||
4 | IRS2-F | AAGCACCTATGCCAGCATCAAC | 129 | 60.5 |
IRS2-R | GAGGATTGCTGAGGTCATTTAGGTC | |||
5 | CYP4A1-F | CTGCTCCGCTTTGAGCTACT | 125 | 59 |
CYP4A1-R | GCTCCACAACGGAATTAGTGG | |||
6 | β-actin-F | TCGTGCGTGACATTAAAGAG | 134 | 61.3 |
β-actin-R | ATTGCCGATAGTGATGACCT |
Table 2 Primers used for qRT-PCR
序号No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') | 产物长度Product size/bp | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | PC-F | TGCGGTCCATCCTGGTCAA | 87 | 63.3 |
PC-R | ACGCCAGGTAGGACCAGTT | |||
2 | FASN-F | ACCTCGTGAAGGCTGTGACTCA | 196 | 59.5 |
FASN-R | TGAGTCGAGGCCAAGGTCTGAA | |||
3 | IGF1-F | TCTTGAAGCAGGTGAAGATGCC | 144 | 60 |
IGF1-R | ACACGAACTGGAGAGCATCC | |||
4 | IRS2-F | AAGCACCTATGCCAGCATCAAC | 129 | 60.5 |
IRS2-R | GAGGATTGCTGAGGTCATTTAGGTC | |||
5 | CYP4A1-F | CTGCTCCGCTTTGAGCTACT | 125 | 59 |
CYP4A1-R | GCTCCACAACGGAATTAGTGG | |||
6 | β-actin-F | TCGTGCGTGACATTAAAGAG | 134 | 61.3 |
β-actin-R | ATTGCCGATAGTGATGACCT |
样品名称 Sample | 原始数据 Raw data | 筛选后的数据 Clean reads | 总映射 Total mapped reads | 多重映射 Multiple mapped reads | 唯一映射 Uniquely mapped reads | Q30 Q30 proportion/% | GC含量 GC proportion/% |
---|---|---|---|---|---|---|---|
CK_1 | 58 699 326 | 58 606 316 | 56 533 208(96.53%) | 2 878 815(4.92%) | 53 654 393(91.61%) | 92.09 | 53.06 |
CK_2 | 46 719 458 | 46 647 138 | 45 044 045(96.64%) | 2 365 004(5.07%) | 42 679 041(91.56%) | 92.23 | 53.54 |
CK_3 | 46 920 008 | 46 857 532 | 44 876 131(95.83%) | 2 253 785(4.81%) | 42 622 346(91.02%) | 92.32 | 52.88 |
LCP_1 | 58 554 166 | 58 465 664 | 56 561 055(96.83%) | 3 000 129(5.14%) | 53 560 926(91.69%) | 92.32 | 52.65 |
LCP_2 | 47 060 314 | 46 984 954 | 45 257 361(96.43%) | 2 532 160(5.40%) | 42 725 201(91.03%) | 92.49 | 53.79 |
LCP_3 | 62 169 938 | 62 063 962 | 59 438 635(95.88%) | 4 063 987(6.56%) | 55 374 648(89.32%) | 91.87 | 53.59 |
Table 3 Sequencing data quality of each sample
样品名称 Sample | 原始数据 Raw data | 筛选后的数据 Clean reads | 总映射 Total mapped reads | 多重映射 Multiple mapped reads | 唯一映射 Uniquely mapped reads | Q30 Q30 proportion/% | GC含量 GC proportion/% |
---|---|---|---|---|---|---|---|
CK_1 | 58 699 326 | 58 606 316 | 56 533 208(96.53%) | 2 878 815(4.92%) | 53 654 393(91.61%) | 92.09 | 53.06 |
CK_2 | 46 719 458 | 46 647 138 | 45 044 045(96.64%) | 2 365 004(5.07%) | 42 679 041(91.56%) | 92.23 | 53.54 |
CK_3 | 46 920 008 | 46 857 532 | 44 876 131(95.83%) | 2 253 785(4.81%) | 42 622 346(91.02%) | 92.32 | 52.88 |
LCP_1 | 58 554 166 | 58 465 664 | 56 561 055(96.83%) | 3 000 129(5.14%) | 53 560 926(91.69%) | 92.32 | 52.65 |
LCP_2 | 47 060 314 | 46 984 954 | 45 257 361(96.43%) | 2 532 160(5.40%) | 42 725 201(91.03%) | 92.49 | 53.79 |
LCP_3 | 62 169 938 | 62 063 962 | 59 438 635(95.88%) | 4 063 987(6.56%) | 55 374 648(89.32%) | 91.87 | 53.59 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differential expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 20 | 40.8 |
GO:0003824 | Catalytic activity | 10 | 20.4 |
GO:0060089 | Molecular transducer activity | 2 | 4.08 |
Table 4 GO functional annotation of up-regulated expressed genes(molecular function)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differential expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 20 | 40.8 |
GO:0003824 | Catalytic activity | 10 | 20.4 |
GO:0060089 | Molecular transducer activity | 2 | 4.08 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0009987 | Cellular process | 25 | 51.0 |
GO:0044699 | Single-organism process | 22 | 44.9 |
GO:0008152 | Metabolic process | 22 | 44.9 |
GO:0065007 | Biological regulation | 17 | 34.7 |
GO:0050789 | Regulation of biological process | 16 | 32.7 |
GO:0050896 | Response to stimulus | 11 | 22.4 |
GO:0032501 | Multicellular organismal process | 10 | 20.4 |
GO:0023052 | Signaling | 9 | 18.4 |
GO:0032502 | Developmental process | 9 | 18.4 |
GO:0048519 | Negative regulation of biological process | 8 | 16.3 |
GO:0071840 | Cellular component organization or biogenesis | 8 | 16.3 |
GO:0040011 | Locomotion | 4 | 8.2 |
GO:0040007 | Growth | 1 | 2.0 |
Table 5 GO functional annotation of up-regulated expressed genes(biological process)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0009987 | Cellular process | 25 | 51.0 |
GO:0044699 | Single-organism process | 22 | 44.9 |
GO:0008152 | Metabolic process | 22 | 44.9 |
GO:0065007 | Biological regulation | 17 | 34.7 |
GO:0050789 | Regulation of biological process | 16 | 32.7 |
GO:0050896 | Response to stimulus | 11 | 22.4 |
GO:0032501 | Multicellular organismal process | 10 | 20.4 |
GO:0023052 | Signaling | 9 | 18.4 |
GO:0032502 | Developmental process | 9 | 18.4 |
GO:0048519 | Negative regulation of biological process | 8 | 16.3 |
GO:0071840 | Cellular component organization or biogenesis | 8 | 16.3 |
GO:0040011 | Locomotion | 4 | 8.2 |
GO:0040007 | Growth | 1 | 2.0 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 6 | 46.2 |
GO:0003824 | Catalytic activity | 2 | 15.4 |
GO:0060089 | Molecular transducer activity | 2 | 15.4 |
Table 6 GO functional annotation of down-regulated expressed genes(molecular function)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 6 | 46.2 |
GO:0003824 | Catalytic activity | 2 | 15.4 |
GO:0060089 | Molecular transducer activity | 2 | 15.4 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0044699 | Single-organism process | 6 | 46.2 |
GO:0065007 | Biological regulation | 5 | 38.5 |
GO:0009987 | Cellular process | 5 | 38.5 |
GO:0050789 | Regulation of biological process | 5 | 38.5 |
GO:0008152 | Metabolic process | 3 | 23.1 |
GO:0032501 | Multicellular organismal process | 3 | 23.1 |
GO:0050896 | Response to stimulus | 3 | 23.1 |
GO:0023052 | Signaling | 3 | 23.1 |
GO:0071840 | Cellular component organization or biogenesis | 2 | 15.4 |
GO:0048519 | Negative regulation of biological process | 2 | 15.4 |
GO:0032502 | Developmental process | 2 | 15.4 |
GO:0040007 | Growth | 1 | 7.69 |
GO:0051179 | Localization | 1 | 7.69 |
GO:0040011 | Locomotion | 1 | 7.69 |
Table 7 GO functional annotation of down-regulated expressed genes(biological process)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0044699 | Single-organism process | 6 | 46.2 |
GO:0065007 | Biological regulation | 5 | 38.5 |
GO:0009987 | Cellular process | 5 | 38.5 |
GO:0050789 | Regulation of biological process | 5 | 38.5 |
GO:0008152 | Metabolic process | 3 | 23.1 |
GO:0032501 | Multicellular organismal process | 3 | 23.1 |
GO:0050896 | Response to stimulus | 3 | 23.1 |
GO:0023052 | Signaling | 3 | 23.1 |
GO:0071840 | Cellular component organization or biogenesis | 2 | 15.4 |
GO:0048519 | Negative regulation of biological process | 2 | 15.4 |
GO:0032502 | Developmental process | 2 | 15.4 |
GO:0040007 | Growth | 1 | 7.69 |
GO:0051179 | Localization | 1 | 7.69 |
GO:0040011 | Locomotion | 1 | 7.69 |
通路名称 Pathway name | 通路编号 Pathway No. | 富集基因数目 Number of enriched genes | 基因名称 Gene name | P值 P value |
---|---|---|---|---|
Taste transduction | ko04742 | 5 | SCNN1B、MSTRG.15055、15056、3072、8035 | 4.23E-05 |
Fatty acid biosynthesis | ko00061 | 2 | Acyl-coenzyme A thioesterase 4 | 9.13E-04 |
Insulin signaling pathway | ko04910 | 4 | PPP1R3B、FASN、IRS2、SOCS2 | 1.30E-03 |
Retinol metabolism | ko00830 | 3 | LOC102181495、LOC108635023、LOC108635036 | 3.85E-03 |
Transcriptional misregulation in cancers | ko05202 | 4 | IGF1、IL1R2、KDM6A、LOC108634619 | 4.21E-03 |
Table 8 Top 5 pathways enriched from the differential expressed liver genes of low crude protein fed goat
通路名称 Pathway name | 通路编号 Pathway No. | 富集基因数目 Number of enriched genes | 基因名称 Gene name | P值 P value |
---|---|---|---|---|
Taste transduction | ko04742 | 5 | SCNN1B、MSTRG.15055、15056、3072、8035 | 4.23E-05 |
Fatty acid biosynthesis | ko00061 | 2 | Acyl-coenzyme A thioesterase 4 | 9.13E-04 |
Insulin signaling pathway | ko04910 | 4 | PPP1R3B、FASN、IRS2、SOCS2 | 1.30E-03 |
Retinol metabolism | ko00830 | 3 | LOC102181495、LOC108635023、LOC108635036 | 3.85E-03 |
Transcriptional misregulation in cancers | ko05202 | 4 | IGF1、IL1R2、KDM6A、LOC108634619 | 4.21E-03 |
[1] | 郭伟, 李文娟, 等. 反刍动物低蛋白日粮应用的研究进展[J]. 饲料工业, 2020, 41(1):47-51. |
Guo Wei, Li WJ, et al. Advances in the application of ruminant low protein diets[J]. Feed Industry, 2020, 41(1):47-51. | |
[2] | Shahjalal M, Bishwas M, et al. Growth and carcass characteristics of goats given diets varying protein concentration and feeding level[J]. Asian-Australasian J Anim Sci, 2000, 13(5):613-618. |
[3] | Wang DF, Zhou LL, Zhou HL, et al. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats[J]. Journal of Animal Science, 2015, 86(2):166-173. |
[4] | Kristensen NB. Splanchnic metabolism of volatile fatty acids in the dairy cow[J]. Int J Fundam Appl Res, 2005, 80(80):3-10. |
[5] |
Li YX, Feng XP, Wang HL, et al. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep[J]. Cell Stress Chaperones, 2019, 24(6):1045-1054.
doi: 10.1007/s12192-019-01019-6 URL |
[6] | Lv XF, Chen L, He SS, et al. Effect of nutritional restriction on the hair follicles development and skin transcriptome of Chinese merino sheep[J]. Animals(Basel), 2020, 10(6):1058. |
[7] |
Zhu W, Xu W, Wei CC, et al. Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids(Capra hircus)[J]. Animals, 2020, 10(1):151.
doi: 10.3390/ani10010151 URL |
[8] | National Research Council. Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids[M]. Washington DC: National Academy Press, USA, 2007. |
[9] |
Clark EL, Bush SJ, McCulloch MEB, et al. A high resolution atlas of gene expression in the domestic sheep(Ovis aries)[J]. PLoS Genet, 2017, 13(9):e1006997.
doi: 10.1371/journal.pgen.1006997 URL |
[10] |
Jitrapakdee S, St Maurice M, Rayment I, et al. Structure, mechanism and regulation of pyruvate carboxylase[J]. Biochemical Journal, 2008, 413(3):369-387.
doi: 10.1042/BJ20080709 pmid: 18613815 |
[11] |
Kido K, Ato S, Yokokawa T, et al. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation[J]. Physiological Reports, 2016, 4(16):e12907.
doi: 10.14814/phy2.12907 URL |
[12] | Longobardi L, Granero-Moltó F, O’Rear L, et al. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells[J]. Journal Growth Factors, 174(2):289-297. |
[13] |
Khosravi MJ, Diamandi A, Mistry J, et al. Acid-labile subunit of human insulin-like growth factor-binding protein complex:measurement, molecular, and clinical evaluation[J]. J Clin Endocr Metab, 1997, 82(12):3944-3951.
pmid: 9398693 |
[14] |
Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms[J]. Journal of Endocrinology, 2002, 175(1):19-31.
pmid: 12379487 |
[15] |
Forsberg EA, Botusan IR, Wang J, et al. Carnosine decreases IGFBP1 production in db/db mice through suppression of HIF-1[J]. Journal of Endocrinology, 2015, 225(3):159-167.
doi: 10.1530/JOE-14-0571 URL |
[16] |
Liu Y, Li F, et al. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner[J]. British J Nutr, 2015, 113(7):1069-1077.
doi: 10.1017/S0007114514004310 URL |
[17] | Wang DF, Zhou LL, Zhou HL, et al. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats[J]. Jounal of Animal Science, 2015, 86(2):166-173. |
[18] |
Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, atranscription factor coupling hepatic glucose utilization and lipid synjournal[J]. Cell Metab, 2006, 4(2):107-110.
doi: 10.1016/j.cmet.2006.06.008 URL |
[19] | Denechaud PD, Bossard P, Lobaccaro JM, et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver[J]. J Clin Inves, 2008, 118(3):956-964. |
[20] |
Giby VG, Ajith TA. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease[J]. World Journal of Hepatology, 2014, 6(8):570-579.
doi: 10.4254/wjh.v6.i8.570 URL |
[21] |
Feige JN, Gelman L, Michalik L, et al. From molecular action to physiological outputs:peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions[J]. Prog Lipid Res, 2006, 45(2):120-159.
doi: 10.1016/j.plipres.2005.12.002 URL |
[22] |
Zhou S, Xu H, Tang Q, et al. Dipyridamole enhances the cytotoxicities of trametinib against colon cancer cells through combined targeting of HMGCS1 and MEK pathway[J]. Molecular Cancer Therapeutics, 2020, 19(1):135-146.
doi: 10.1158/1535-7163.MCT-19-0413 URL |
[23] | Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Molec Cell Biol, 2005, 6(11):838-849. |
[24] |
Jiang W, Wang JZ, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway[J]. Cell Research, 2013, 23(1):122-130.
doi: 10.1038/cr.2012.119 pmid: 22907667 |
[1] | JIANG Xian-zhe, ZHANG Bo-yan, LUO Hai-ling, ZHANG Xin-meng, WANG Bing. Role of Gut-Liver Axis in Animal Nutritional Metabolism and Immunity [J]. Biotechnology Bulletin, 2022, 38(7): 128-135. |
[2] | SUN De-quan, LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang. Application of Mesoporous Silica Nanoparticles in Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 228-239. |
[3] | ZHONG Ming-yue, LIU Chun-yan, YAN Yan, ZHANG Xiao-hui, YUAN Hai-sheng, XU Guo-quan, ZHANG He-ping, WANG Yu-zhen. Improvement Effect of Bifidobacterium lactis V9 on NAFLD Rats Induced by High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(3): 181-187. |
[4] | SHENG Xue-qing, ZHAO Nan, LIN Ya-qiu, CHEN Ding-shuang, WANG Rui-long, LI Ao, WANG Yong, LI Yan-yan. Cloning and Expression Analysis of ZNF32 Gene in Goat [J]. Biotechnology Bulletin, 2022, 38(12): 300-311. |
[5] | ZHANG Hao, HE Chang-sheng, LI Yan-yan, WANG Yong, ZHU Jiang-jiang, Emu Quzhe, LIN Ya-qiu. Regulation of miR-301b on Goat Intramuscular Adipocyte Differentiation [J]. Biotechnology Bulletin, 2022, 38(10): 254-261. |
[6] | QIAO Zi-peng, WANG Qi-zhi, YANG Dao-mao, RUAN Li-ping. Research Progress in Fungi-mediated Biosynthesis of Sliver Nanoparticles [J]. Biotechnology Bulletin, 2021, 37(3): 185-197. |
[7] | LIU Ya-ling, YU Ying, LU Hai-kun, LEI Hui-xia, SUI Xin, GUO Jing. Transcriptome Differential Expression Analysis of Mycocentrospora acerina Under Antagonism by Brevibacillus laterosporus S2-31 [J]. Biotechnology Bulletin, 2021, 37(2): 111-121. |
[8] | ZHANG Hao, ZHANG Ya-nan, LI Xin, WANG Jia-mei, WANG Yong, ZHU Jiang-jiang, XIONG Yan, LIN Ya-qiu. Effect of PDK4 on the Lipid Metabolism of Goat Intramuscular Adipocytes [J]. Biotechnology Bulletin, 2021, 37(12): 151-159. |
[9] | LI Xue, LI Jun-min, ZHANG Lei, LI Shan. Expression and Purification of Cell-penetrating Peptide M918 Conjugate Antibody and Study on Its Uptake Efficiency [J]. Biotechnology Bulletin, 2021, 37(12): 198-204. |
[10] | GUO Dong-dong, SUN Fen, HE Xuan-ang, YANG Dong-ye, HUANG Lai-qiang. Application and Prospects of Single-Cell Sequencing in Liver Disease [J]. Biotechnology Bulletin, 2021, 37(1): 137-144. |
[11] | ZHANG Le-chao, LIU Yue-qin, DUAN Chun-hui, ZHANG Ying-jie, WANG Yong, GUO Yun-xia. Analysis of Genetic Diversity and Genetic Structure in 7 Local Goat Breeds [J]. Biotechnology Bulletin, 2020, 36(6): 183-190. |
[12] | LI Xiao-kai, FAN Yi-xing, QIAO Xian, ZHANG Lei, WANG Feng-hong, WANG Zhi-ying, WANG Rui-jun, ZHANG Yan-jun, LIU Zhi-hong, WANG Zhi-xin, HE Li-bing, LI Jin-quan, SU Rui, ZHANG Jia-xin. Research Progress of Goat Genome and Genetic Variation Map [J]. Biotechnology Bulletin, 2020, 36(4): 175-184. |
[13] | SONG Shao-zheng, LU Rui, ZHANG Ting, HE Zheng-yi, WU Zhao-manqiu, CHENG Yong, ZHOU Ming-ming. Research Progress of CRISPR /Cas9 Gene Editing Technology in Goat and Sheep [J]. Biotechnology Bulletin, 2020, 36(3): 62-68. |
[14] | ZHOU Min-ya, LU Rui, ZHANG Ting, YUAN Ting-ting, LU Yao-yao, YAN Kun-ning, YUAN Yu-guo, CHENG Yong. Preparation of Recombinant Human SOD1/3 Transgenic Goat and Detection of Expressed Products [J]. Biotechnology Bulletin, 2019, 35(5): 85-92. |
[15] | CHANG Yun-jian, KANG Ran, XUE Xuan, WANG Shao-chang, ZHAO Qing-wen, GUO Zhi-yun. Identification and Functional Analysis of Enhancers-regulated miRNA Feed-forward Loops in Hepatocellular Carcinoma [J]. Biotechnology Bulletin, 2019, 35(5): 140-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||