Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (7): 11-17.doi: 10.13560/j.cnki.biotech.bull.1985.2015.07.002
• Review • Previous Articles Next Articles
Guo Wenfang, Nong Wanting, Li Gangqiang, Liu Dehu
Received:
2014-09-15
Online:
2015-07-16
Published:
2015-07-16
Guo Wenfang, Nong Wanting, Li Gangqiang, Liu Dehu. Research Progress of Genetic Engineering on Plant Salt Tolerance[J]. Biotechnology Bulletin, 2015, 31(7): 11-17.
[1] 林聪, 屠乃美, 易镇邪, 等. 耐盐碱能源植物研究进展[J]. 作物研究, 2012, 26(3):304-308. [2] 王奕, 任贤, 于志晶, 等. 玉米耐盐碱转基因研究进展[J]. 安徽农业科学, 2012, 40(7):3908-3911. [3] Sreenivasulua N, Soporyb SK, Kavi Kishorc PB, et al. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches[J]. Gene, 2007, 388(1-2):1-13. [4] 任伟, 王志峰, 徐安凯. 碱茅耐盐碱基因克隆研究进展[J]. 草业学报, 2010, 19(5):260-266. [5] 江香梅, 黄敏仁, 王明庥. 植物甜菜碱合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2002, 22(4):49-55. [6] McCue KF, Hanson AD. Salt- inducible betaine aldehyde dehydro-genase from sugar beet:cDNA cloning and expression[J]. Plant Mol Bio, 1992, 18(1):1-11. [7] Hu CA, Delauney AJ, Verma DPS. A bifunctional enzyme(delta 1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[J]. Proc Natl Acad Sci USA, 1992, 89(19):9354-9358. [8] Szabados L, Savouré A. Proline:a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97. [9] 秘彩莉, 郭光艳, 齐志广, 等. 植物盐胁迫的信号传导途径[J]. 河北师范大学学报:自然科学版, 2007, 31(3):375-379. [10] 付寅生, 崔继哲, 陈广东, 等. 盐碱胁迫下碱地肤Na+/H+逆向转运蛋白基因KsNHX1表达分析[J]. 应用生态学报, 2012, 23(6):1629-1634. [11] Noreen S, Ashraf M, Hussain M, et al. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sun-flower(Helianthus annuus L .)plants[J]. Pakistan Journal of Botany, 2009, 41(1):473-479. [12] 程继东, 安玉麟, 孙瑞芬, 等. 抗旱、耐盐基因类型及其机理的研究进展[J]. 华北农学报, 2006, 21(专辑):116-120. [13] He HY, He LF. The role of carbon monoxide signaling in the responses of plants to abiotic stresses[J]. Nitric Oxide, 2014, 42:40-43. [14] Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Upregulation of antioxidant enzymes by exogenous gallic acid contributes to the amelioration in Oryza sativa roots exposed to salt and osmotic stress[J]. Environ Sci Pollut Res, 2015, 22(2):1487-1497. [15] Zhu JK. Plant salt tolerance[J]. TRENDS in Plant Science, 2001, 6(2):66-71. [16] Wang H, Zhou Y, Bird DA, Fowke LC. Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors[J]. J Microsc, 2008, 231(2):234-246. [17] 江香梅, 黄敏仁, 王明麻. 植物抗盐碱、耐干旱基因工程研究进展[J]. 南京林业大学学报:自然科学版, 2001, 25(5):57-62. [18] Gupta K, Jha B, Agarwal PK. A dehydration-responsive element binding(DREB)transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco[J]. Mar Biotechnol, 2014, 16(6):657-673. [19] Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12):1263-1274. [20] 孙兰菊, 岳国峰, 王金霞, 等. 植物耐盐机制的研究进展[J]. 海洋科学, 2001, 25(4):28-31. [21] 董云洲, 王雪艳. 转肌醇甲基转移酶基因烟草的耐盐性及其遗传分析田[J]. 农业生物技术学报, 2000, 8(1):53-55. [22] 王慧中, 黄大年, 鲁瑞芳, 等. 转mtID和gutD双价基因水稻的耐盐性[J]. 科学通报, 2000, 45(7):724-729. [23] Lv S, Zhang KW, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance[J]. Plant Cell Physiol, 2008, 49(8):1150-1164. [24] Li B, Li N, Duan XG, et al. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system[J]. J Biotechnol, 2010, 145(2):206-213. [25] Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions[J]. Plant Biotechnol J, 2011, 9(1):88-99. [26] Yang A, Dai X, Zhang WH, et al. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. J Exp Bot, 2012, 63(7):2541-2556. [27] Zsigmond L, Szepesi A, Tari I, et al. Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis[J]. Plant Sci, 2012, 182:87-93. [28] Zhang Z, Wang J, Zhang R, et al. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J]. Plant J, 2012, 71(2):273-287. [29] Sultana S, Khew CY, Morshed MM, et al. Overexpression of monodehydroascorbate reductase from a mangrove plant(AeMDHAR)confers salt tolerance on rice[J]. J Plant Physiol, 2012, 169(3):311-318. [30] Baisakh N, RamanaRao MV, Rajasekaran K, et al. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora L?isel[J]. Plant Biotechnol J, 2012, 10(4):453-464. [31] Zhou ML, Ma JT, Zhao YM, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica[J]. Gene, 2012, 506(1):10-17. [32] Gao SQ, Chen M, Xia LQ, et al. A cotton(Gossypium hirsutum)DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat[J]. Plant Cell Rep, 2009, 28(2):301-311. [33] Ying S, Zhang DF, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2):253-266. [34] Zhang Y, Li Y, Lai J, et al. Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis[J]. Mol Biol Rep, 2012, 39(4):4627-4633. [35] Zou J, Liu C, Liu A, et al. Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice[J]. J Plant Physiol, 2012, 169(6):628-635. [36] Xie F, Wang Q, Sun R, Zhang B. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J]. J Exp Bot, 2015, 66(3):789-804. [37] Zhou M, Li D, Li Z, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiol, 2013, 161(3):1375-1391. [38] Badran EG, Abogadallah GM, Nada RM, Nemat Alla MM. Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat[J]. Protoplasma, 2015, 252(3):835-844. |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[3] | YUAN Kai, HE Wei, YANG Yun-li, ZHU Wei-yu, PENG Chao, AN Tai, LI Li, ZHOU Wei-qiang. Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids [J]. Biotechnology Bulletin, 2021, 37(8): 46-54. |
[4] | HU Yu-jie, ZHU Xiu-ling, DING Yan-qin, DU Bing-hai, WANG Cheng-qiang. Research Progress on Salt Tolerance and Growth-promoting Mechanism of Bacillus [J]. Biotechnology Bulletin, 2020, 36(9): 64-74. |
[5] | SUN Pei, WANG Gang, ZHANG Ya-nan, LI Qian, JI Jing, YANG Dan, YUAN Dong, , WANG Chang, WANG Yu-rong, WANG Ping. Screening and Identification of a Salt-tolerant Growth-promoting Bacterium and Its Effect on the Growth of Maize Seedlings [J]. Biotechnology Bulletin, 2019, 35(8): 27-33. |
[6] | HE Hu-yi, TANG Zhou-ping, YANG Xin, FAN Wu-jing, TAN Guan-ning, LI Li-shu, HE Xin-min. Research Progress on Potato Starch Synthesis and Degradation [J]. Biotechnology Bulletin, 2019, 35(4): 101-107. |
[7] | LI E, HU Hua-ran, LI Jiao-nan, DU Guang-hui, LIU Fei-hu. Research Progress on Endophytic Fungi Improving Plant Resistance to Salt Stress [J]. Biotechnology Bulletin, 2019, 35(11): 169-178. |
[8] | ZHANG Zhi-min, ZHUANG Miao, JIN Feng-jie. Advances in Gene Engineering Technologies for Aspergillus oryzae [J]. Biotechnology Bulletin, 2018, 34(9): 170-176. |
[9] | GAO Yue, GUO Xiao-peng, YANG Yang, ZHANG Miao-miao, LI Wen-jian, LU Dong. Research Progress of Biobutanol Fermentation [J]. Biotechnology Bulletin, 2018, 34(8): 27-34. |
[10] | GUO Wen-fang, WANG Nan, LI Gang-qiang, XU Fang-fang, YANG Cai-feng, LIU De-hu. Comparative Analysis of Identification Methods of CP4-EPSPS Transgenic Cotton Plants [J]. Biotechnology Bulletin, 2017, 33(4): 114-118. |
[11] | LIU He, ZHU Jia-qing, ZONG Qiu-jin, LI Bing-zhi, YUAN Ying-jin. The Development of Engineered Saccharomyces cerevisiae for Biomass Conversion [J]. Biotechnology Bulletin, 2017, 33(1): 93-98. |
[12] | MAO Jia-ling, XU Lin, YAN Ming. Construction and Characterization of the Pathways of Synthesizing Lactate in Vitro Related to NADP(H) [J]. Biotechnology Bulletin, 2016, 32(9): 260-266. |
[13] | LI Wen-zong,WANG Lei. Research Progress on Genetic Engineering for Long-chain Polyunsaturated Fatty Acids EPA and DHA [J]. Biotechnology Bulletin, 2016, 32(8): 1-7. |
[14] | Yu Boying, Wang Ninglin, Li Guojing, Xia Yiji. Application Prospect of Genetic Engmeering and Metabolic Engineering in Improving Its Production of Steviol Glycoside [J]. Biotechnology Bulletin, 2015, 31(9): 8-14. |
[15] | Shu Hongmei, Guo Shuqiao, Gong Yuanyong, Ni Wanchao. Construction of Root Expression Vector of Brassinosteroid Gene BAS1 and Genetic Transformation into Tobacco [J]. Biotechnology Bulletin, 2015, 31(6): 106-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||